

DIE WICHTIGSTEN HYGIENE-PUBLIKATIONEN DES LETZTEN JAHRES

MHH HYGIENE-SYMPOSIUM

Gebäude J1, Ebene 1, Hörsaal F – Dienstag 26.08.2025 | 10:10 Uhr

Simone Scheithauer - Institut für Hygiene und Infektiologie (IH&I)

Conflict of interest

binnen letzter 5 y in Fettdruck

Research-grants:

BMBF: NUM-SAR; B-FAST; PREPARED; GenSurV; MolTraX; GenSurV+; CollPan; Codex+ ad hoc; alle NUM; HiGHmed, Use Case Infection Control; RISK

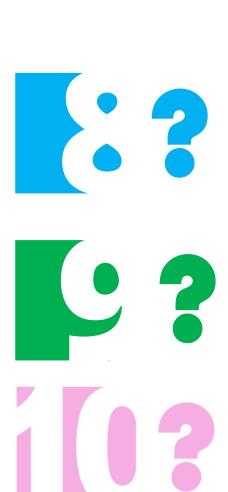
PRINCIPE; both medical informatics initiatives; **BMBF Professorship programme; WISDOM** BMG G-BA/ Innovations fond: HOPE/ INSIST/ RetoCdiff/ InnoBri; **UMG Nachlaß Grun**; VW Vorab/MWK Niedersachsen: **MRE-TRAVIK**; **VW Science room: GelP;** MWK: EdUMG, Opti-ITS; B. Braun: GAST; **EFRE: PraeInfekt;**

MWK/ECAS: Lower Saxony/

Scotland Joint Forum

Lecture/advisory/review:

Appointed member of the KRINKO; **Appointed member of Expert Group** Resilience and Health (BKAmt); **Appointed member of the Scientific Advisory Board Public Health Microbiology (RKI)**; **Supervisory Board HZI Braunschweig; Supervisory Board Plasma for life;** Scientific Advisory Board Faculty of Medicine Uni Bielefeld, DFG Reviewers Research Campus and Junior Research Groups, **Expert Panel on Postoperative Wound Infections IQTIG, Reviewers Research Campus InfectoGnosticts**; MWK Bayern u. BW, VW Stiftung; Astellas, B. Braun, Bode/Hartmann, Brill, TORK/ Essity Herausgebergremium Krankenhaushygiene up2date, Thieme Verlag; 4. Auflage Krankenhaus- und Praxishygiene, Elsevier Verlag



Best Paper : Potpourri

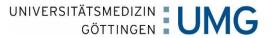
- REIN SUBJEKTIVE AUSWAHL -

Catho G et al.

Antimicrob Resist

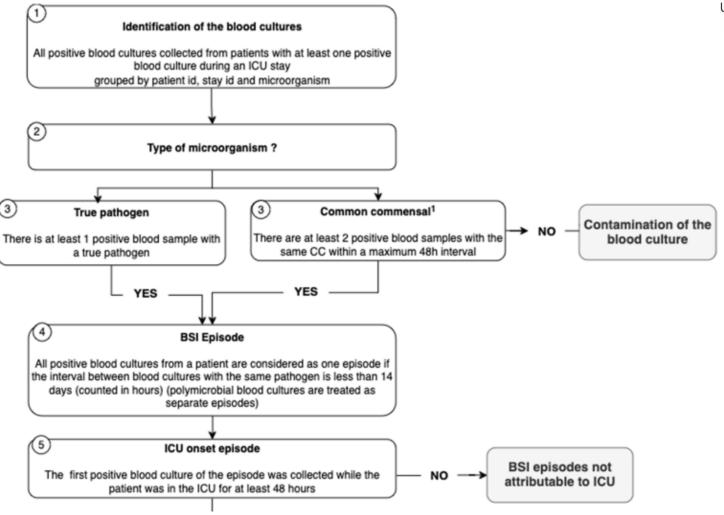
Infect Control 2024;

13: 28


Best Paper : Potpourri

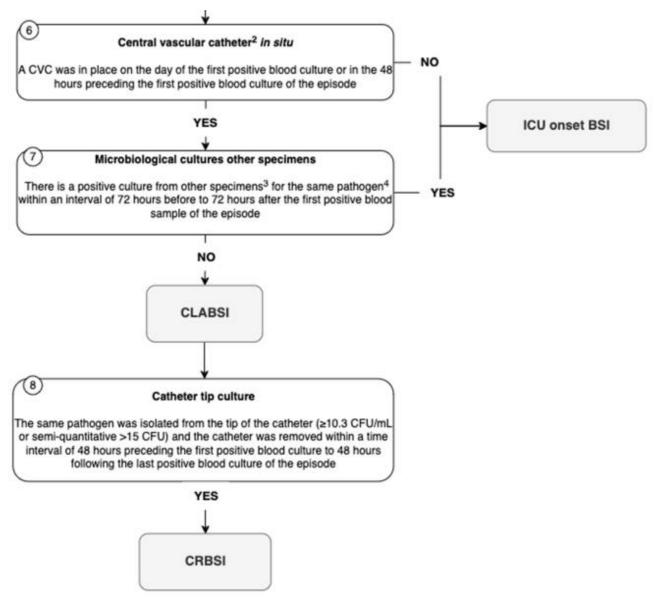
- REIN SUBJEKTIVE AUSWAHL -

Surveillance of catheter-associated bloodstream infections: development and validation of a fully automated algorithm


Catho G et al. Antimicrob Resist Infect Control 2024; 13: 28. DOI: 10.1186/s13756-024-01395-4.

Ziel

Validierung einer automatisierten Surveillance für CRBSI and CLASBI auf Intensivstationen


Vorgehen

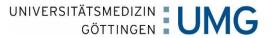

- Algorithmen entwickelt eingeschlossene Parameter basierend auf Literaturanalyse
- Schweiz, retrospektive 2 J Analyse
- Datenfluss aus lokalem Datawarehouse
- Validation durch Abgleich mit Daten prospektiver (?) manueller Surveillance über 6 J.

Fig. 1 Fully automated algorithm developed for CRBSI, CLABSI and intensive care unit (ICU) onset BSI detection for patients in the ICU. 1. List of common commensals from the CDC NHSN. 2. Only short term central vascular catheters are considered. 3. Specimens included: respiratory samples, urinary samples, central nervous system samples, abdominal samples, bone and joints samples. 4. This rule applies only to true pathogens and not to common commensal (even if classified as true pathogen on step 3). ICU: intensive care unit; BSI: bloodstream infection; CVC: central vascular catheter; CLABSI: central line associated Bloodstream Infection; CRBSI: Catheter related bloodstream infection; CC: common commensals

Ergebnisse

- 2016-21: 854 positive Blutkulturen in 346 Patienten
- Via Algorithmen: 5 CRBSI, 109 CLABSI und 280 ICU-BSI identifiziert
- Inzidenzraten: CRBSI 0.18/1000 Kathetertage (95% CI 0.06–0.41), CLABSI 3.86/1000 Kathetertage (95% CI: 3.17–4.65).
- Sensitivität, Spezifität, PPV, NPV für CRBSI: 83% (95% CI 43.7–96.9), 100% (95% CI 99.5–100), 100% (95% CI 56.5–100), 99.9% (95% CI 99.2–100)
- Vergleich CLABSI mit Algorithmen über 2 J (n = 51) ident

Mein Fazit:
Automatisierte Detektion (erster Schritt der Surveillance) ist Zukunft

- REIN SUBJEKTIVE AUSWAHL -

Catho G et al. **Antimicrob Resist** Infect Control 2024; 13: 28

Daneman N et al. *N Engl J Med* 2025; 392: 1065-1078

Daneman N et al. N Engl J Med 2025; 392: 1065-1078. DOI: 10.1056/NEJMoa2404991.

Ziel

Festlegung der erforderlichen Therapiedauer

Vorgehen

- multizentrische Nicht-Unterlegenheitsstudie; 74 Kliniken in 7 Ländern
- Patienten mit BSI
- Ausschluss: Immunsuppression, bekannte Foku mit langer Therapiedauer, Kontaminanten, S.aureus BSI
- Auswahl der Substanz, Applikationsroute, Dosis erfolgte durch betreuendes Team
- primärer Endpunkt: Todesfälle binnen 90 Tagen; Nicht-Unterlegenheit (4%)

Characteristic	Overall (N = 3608)	7-Day Group (N = 1814)	14-Day Grou (N = 1794)
Male sex — no. (%)	1922 (53.3)	974 (53.7)	948 (52.8)
Median age (IQR) — yr	70 (59–80)	70 (58–80)	70 (59–80)
Median SOFA score on day 0 (IQR)†		4 (2–8)	
	4 (2–8)		5 (2-8)
Enrolled in ICU — no. (%)	1986 (55.0)	997 (55.0)	989 (55.1)
Enrolled in hospital ward — no. (%)	1622 (45.0)	817 (45.0)	805 (44.9)
deceiving mechanical ventilation — no. (%)	766 (21.2)	374 (20.6)	392 (21.9)
Coexisting conditions — no. (%)		F0.5 (72.0)	FF0 (20.0)
Diabetes mellitus	1148 (31.8)	596 (32.9)	552 (30.8)
Solid-organ cancer	782 (21.7)	400 (22.1)	382 (21.3)
Obesity	655 (18.2)	331 (18.2)	324 (18.1)
Arrhythmia	540 (15.0)	264 (14.6)	276 (15.4)
Glucocorticoid use or immunosuppression:	440 (12.2)	230 (12.7)	210 (11.7
Chronic obstructive pulmonary disease	393 (10.9)	198 (10.9)	195 (10.9)
Renal insufficiency	425 (11.8)	217 (12.0)	208 (11.6
Coronary artery disease	393 (10.9)	193 (10.6)	200 (11.1
Congestive heart failure	386 (10.7)	205 (11.3)	181 (10.1)
Liver disease	227 (6.3)	117 (6.4)	110 (6.1)
Peripheral vascular disease	223 (6.2)	107 (5.9)	116 (6.5)
Dialysis dependency	127 (3.5)	60 (3.3)	67 (3.7)
Leukemia or lymphoma	101 (2.8)	49 (2.7)	52 (2.9)
Median Clinical Frailty Scale score (IQR)	4 (3-5)	4 (3-5)	4 (3-5)
ny use of procedures to control the source of infection — no. (%)¶	1621 (44.9)	795 (43.8)	826 (46.1)
ource of acquisition of bacteremia — no. (%)			
Community	2722 (75.4)	1380 (76.1)	1342 (74.8
Hospital ward	483 (13.4)	231 (12.7)	252 (14.0)
ICU	403 (11.2)	203 (11.2)	200 (11.1)
ource of bacteremia — no. (%)			
Urinary tract	1523 (42.2)	757 (41.7)	766 (42.7
Intraabdominal or hepatobiliary	679 (18.8)	337 (18.6)	342 (19.1)
Lung	469 (13.0)	229 (12.6)	240 (13.4
Vascular catheter	229 (6.3)	116 (6.4)	113 (6.3)
Skin, soft tissue, or both	187 (5.2)	104 (5.7)	83 (4.6)
Other	67 (1.9)	37 (2.0)	30 (1.7)
Undefined or unknown	454 (12.6)	234 (12.9)	220 (12.3)
lost commonly isolated pathogens in blood cultures — no. (%)	es es establishment		
Escherichia coli	1582 (43.8)	805 (44.4)	777 (43.3)
Klebsiella species	552 (15.3)	273 (15.0)	279 (15.6)
Enterococcus species	250 (6.9)	119 (6.6)	131 (7.3)
Coagulase-negative staphylococci	174 (4.8)	81 (4.5)	93 (5.2)
Pseudomonas species	170 (4.7)	80 (4.4)	90 (5.0)

Characteristic	Overall (N = 3608)	7-Day Group (N = 1814)	14-Day Group (N = 1794)
Streptococcus pneumoniae	164 (4.5)	86 (4.7)	78 (4.3)
Enterobacter species	157 (4.4)	80 (4.4)	77 (4.3)
Proteus species	133 (3.7)	58 (3.2)	75 (4.2)
Serratia species	86 (2.4)	38 (2.1)	48 (2.7)
S. pyogenes	74 (2.1)	39 (2.1)	35 (2.0)
S. agalactiae	75 (2.1)	40 (2.2)	35 (2.0)
Number and type of organisms — no. (%)			
Monomicrobial, gram-negative	2562 (71.0)	1299 (71.6)	1263 (70.4)
Monomicrobial, gram-positive	625 (17.3)	323 (17.8)	302 (16.8)
Polymicrobial	421 (11.7)	192 (10.6)	229 (12.8)

^{*} ICU denotes intensive care unit and IQR interquartile range.
† Scores on the Sequential Organ Failure Assessment (SOFA) range from 0 to 24, with higher scores indicating more

[‡] Immunosuppression included chemotherapy and prednisone or equivalent glucocorticoid use of more than 15 mg per

[§] Scores on the Clinical Frailty Scale range from 1 to 9, with higher scores indicating greater frailty.

¶ One patient in the 14-day group was missing source-control data.

See the Supplementary Appendix for the full list of organisms.

Differences are expressed as absolute risk differences or, for variables shown as medians, as median differences. A 95.7% confidence interval is shown for the primary analysis (accounting for alpha spending in interim analyses), and 95% confidence intervals are shown for the per-protocol analysis, the modified intention-to-treat analysis, and the secondary outcomes. The widths of the confidence intervals for secondary outcomes have not been adjusted for multiplicity. The 95% confidence intervals for the median differences were estimated with the use of quantile regression.

One patient in the 7-day group is still in the hospital.

Deaths in the ICU include patients who were enrolled in the ICU or were admitted to the ICU after the diagnosis of a bloodstream infection.

The length of stay in the ICU was evaluated in patients who were enrolled in the ICU or were admitted to the ICU after the diagnosis of a bloodstream infection.

Included are data for the patients who received vasopressors at any time after enrollment (722 patients in the 7-day group and 743 patients in the 14-day group).

Included are the data for patients who received mechanical ventilation (469 patients in the 7-day group and 488 patients in the 14-day group).

Data regarding antibiotic-free days are missing for 2 patients in the 14-day group.

Outcome	7-Day Group (N = 1814)	14-Day Group (N = 1794)	Difference (95% CI)*
			percentage points
Primary outcome, death from any cause by 90 days — no./ total no. (%)			
Primary analysis, intention-to-treat population	261/1802 (14.5)	286/1779 (16.1)	-1.6 (-4.0 to 0.8)
Secondary analysis, per-protocol population	178/1370 (13.0)	222/1483 (15.0)	-2.0 (-4.5 to 0.6)
Modified intention-to-treat analysis, survival ≥7 days	247/1788 (13.8)	272/1765 (15.4)	-1.6 (-3.9 to 0.7)
Secondary outcomes			
Death in hospital — no. (%)†	168 (9.3)	184 (10.3)	-1.0 (-2.9 to 0.9)
Death in ICU — no./total no. (%):	91/1014 (9.0)	97/1008 (9.6)	-0.6 (-3.2 to 1.9)
Median no. of days in hospital (IQR)	10 (6–21)	11 (6-22)	-1 (-1.5 to -0.5)
Median no. of hospital-free days by day 28 (IQR)	17 (0-21)	15 (0-21)	2 (0.8 to 3.2)
Median no. of days in ICU (IQR)∫	5 (3–11)	5 (3-11)	0 (-0.4 to 0.4)
Median no. of days of vasopressor use (IQR) ¶	3 (2-5)	3 (2-4)	0
Median no. of days of mechanical ventilation (IQR)	6 (3–14)	5 (2-12)	1 (-0.6 to 2.6)
Relapse of bacteremia — no. (%)	47 (2.6)	39 (2.2)	0.4 (-0.6 to 1.4)
Median no. of antibiotic-free days by day 28 (IQR)**	19 (11–21)	14 (11–14)	5 (4.6 to 5.4)
Antimicrobial-related adverse outcomes — no. (%)			
Allergy	14 (0.8)	19 (1.1)	-0.3 (-0.9 to 0.3)
Anaphylaxis	1 (0.1)	1 (0.1)	0 (-0.2 to 0.2)
Acute kidney injury	15 (0.8)	17 (0.9)	-0.1 (-0.7 to 0.5)
Acute hepatitis	2 (0.1)	4 (0.2)	-0.1 (-0.4 to 0.2)
Clostridioides difficile infection — no. (%)	31 (1.7)	35 (2.0)	-0.2 (-1.1 to 0.6)
Secondary infection or colonization with antibiotic-resistant organisms — no. (%)	173 (9.5)	152 (8.5)	1.1 (-0.8 to 2.9)
Secondary infection or colonization with antibiotic-resistant organisms in sterile culture — no. (%)	20 (1.1)	24 (1.3)	-0.2 (-1 to 0.5)

Ergebnisse

Nach 90 Tagen waren 261 Patienten (14.5%) aus der 7 Therapietage-Gruppe und 286 Patienten (16.1%) aus der 14 Therapietage-Gruppe verstorben [95.7% CI –4.0 to 0.8]) Längere als Protokoll Therapiedauer in 23.1% und 10.7% der 7 vs 14 Therapietage-Gruppen

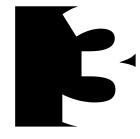
Analysis	7 Days no. of even	14 Days ts/total no.	Risk Difference (95% CI) percentage points
Intention-to-treat	261/1802	286/1779	-1.6 (-4.0 to 0.8)
Per-protocol	178/1370	222/1483	-2.0 (-4.5 to 0.6)
Modified intention-to-treat	247/1788	272/1765	-1.6 (-3.9 to 0.7)
			-8.0 -6.0 -4.0 -2.0 0.0 2.0 4.0 6.0 8.0
			7 Days Noninferior 7 Days Inferior

Autorenfazit:

"Among hospitalized patients with bloodstream infection, antibiotic treatment for 7 days was noninferior to treatment for 14 days."

- REIN SUBJEKTIVE AUSWAHL -

Catho G et al.


Antimicrob Resist

Infect Control 2024;
13: 28

Daneman N et al. N Engl J Med 2025; 392: 1065-1078

Gark S et al.

N Engl J Med 2025;
27;392:843-854

Highly Pathogenic Avian Influenza A(H5N1) Virus Infections in Humans

Garg S et al. N Engl J Med 2025; 392: 843-854. DOI: 10.1056/NEJMoa2414610.

Ziel

Beschreibung menschlicher Fälle mit hochpathogener aviärer Influenza A(H5N1) 2024

Vorgehen

Datenanalyse aller laborbestätigter Fälle in USA 03-10/2024 aus CDC Datensätzen

Ergebnisse

- 46 Patienten, davon 20 via Kontakt zu infizierten Puten, 25 via Kontakt zu (wahrscheinlich) infizierten Milchkühen, 1 Fall ohne bekannte Exposition
- die Infizierten verwendetetn wie folgt PPE: Handschuhe (71%), Augenschutz (60%), Gesichtsmasken (47%)
- alle Tierexponierten hatten milde Symptome und es kam zu keinem Krankenhausaufenthalt resp. Todesfall
- 87% erhielten Oseltamivir (im Mittel) 2 Tage nach Symptombeginn
- es kam zu keinen Sekundärfällen unter 97 Haushaltskontakten

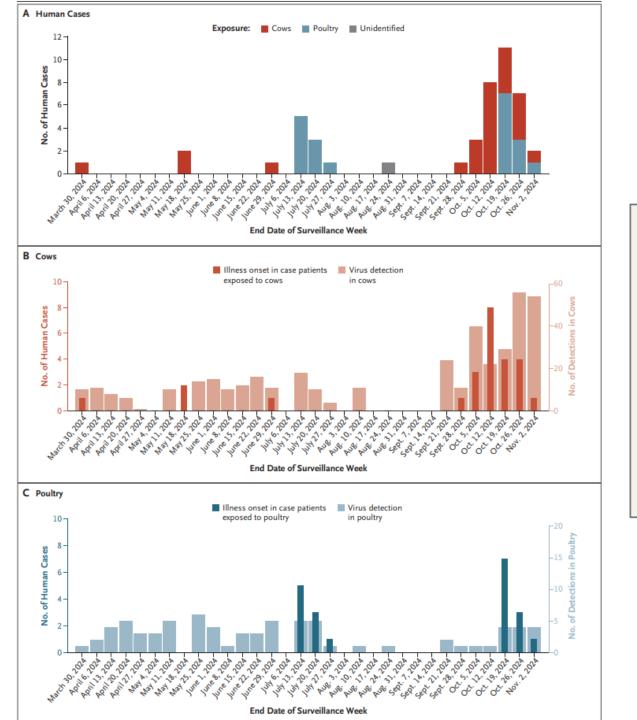


Figure 1 (facing page). Number of Human Cases of Influenza A(H5N1) Virus Infection According to Date of Illness Onset and Number of A(H5N1) Virus Detections in Dairy Cows and Poultry.

Panel A shows the number of human cases of highly pathogenic avian influenza A(H5N1) virus infection in the United States according to date of illness onset and exposure type; the 46 cases were identified from March through October 2024. Panels B and C show the number of A(H5N1) virus detections in dairy cows and poultry, respectively, according to epidemiologic week, overlayed by the number of human cases stratified according to exposure type. The case with no identified exposure route was excluded from Panels B and C.

Table 1. Epidemiologic Characteristics of 45 Case Patients with Highly Pathogenic Avian Influenza A(H5N1) Virus Infection Who Had Exposure to Infected Animals.*

Characteristic	Exposure to Poultry (N = 20)	Exposure to Dairy Cows (N = 25)	Overall (N = 45)
Median age — yr†	28	39	34
Male sex — no. (%)	11 (55)	25 (100)	36 (80)
Exposure type — no. (%)			
Poultry depopulation event	20 (100)	0	20 (44)
Direct contact with cows	0	4 (16)	4 (9)
Raw milk and direct contact with cows§	0	21 (84)	21 (47)
Median time between symptom onset and interview (range) — days¶	4.5 (2.0-11.0)	2.0 (0-12.0)	3.0 (0-12.0)
Median time between symptom onset and specimen collection (range) — days	1.0 (0-4.0)	2.0 (0-8.0)	2.0 (0-8.0)
Median no. of persons in household (range)**	3 (1-7)	3 (0-5)	3 (0-7)
Seasonal influenza vaccination in past 12 mo — no./total no. (%)	6/17 (35)	4/23 (17)	10/40 (25)
PPE use — no. (%)††			
Eye protection and respirator or face mask	13 (65)	3 (12)	16 (36)
Respirator	4 (20)	0	4 (9)
Face mask	15 (75)	6 (24)	21 (47)
Eye protection	15 (75)	12 (48)	27 (60)
Gloves	17 (85)	15 (60)	32 (71)
Boots	11 (55)	7 (28)	18 (40)
Gown	16 (80)	4 (16)	20 (44)

Table 4. Specimen Positivity According to Sign or Symptom Type among 46 Case Patients with Highly Pathogenic Avian Influenza A(H5N1) Virus Infection.*

Sign or Symptom Type	Conjunctival Swab (N=41)	Nasopharyngeal Swab (N = 37)	Combined Nasal– Oropharyngeal Swab (N=22)
	num	ber/total number (perd	cent)
Conjunctivitis			
Yes	35/39 (90)	11/33 (33)	9/20 (45)
No	1/2 (50)	2/4 (50)	0/2
Respiratory†			
Yes	11/13 (85)	5/11 (45)	5/9 (56)
No	25/28 (89)	8/26 (31)	4/13 (31)
Clinical syndromes‡			
Conjunctivitis only	13/15 (87)	3/13 (23)	1/6 (17)
Conjunctivitis plus respiratory	11/12 (92)	5/12 (42)	3/6 (50)
Conjunctivitis plus nonrespiratory	11/12 (92)	3/8 (38)	5/8 (62)
Nonconjunctival only	1/2 (50)	2/4 (50)	0/2
Fever			
Yes	18/20 (90)	7/18 (39)	3/10 (30)
No	18/21 (86)	6/19 (32)	6/12 (50)
Gastrointestinal §			
Yes	6/6 (100)	3/5 (60)	1/2 (50)
No	30/35 (86)	10/32 (31)	8/20 (40)
MHH Symposium - 2025 – Scheitl	nauer - Die wichtigsten Hygie	ene-Publikationen des le	etzten Jahres

Highly Pathogenic Avian Influenza A(H5N1) Virus Infections in Humans

Garg S et al. N Engl J Med 2025; 392: 843-854. DOI: 10.1056/NEJMoa2414610.

Autorenfazit

KEINE (noch) Mensch zu Mensch Übertragung

PPE Gebrauch suboptimal

Zusätzliche Strategien / Bessere Umsetzung erforderlich

Mein Fazit:

Sehen wir Mensch zu Mensch Übertragung?

Wir sollten vorbereitet sein! Wir sollten zusammenarbeiten (über Speziesgrenzen hinweg)

Best Paper : Potpourri

- REIN SUBJEKTIVE AUSWAHL -

Catho G et al.

Antimicrob Resist

Infect Control 2024;
13: 28

Daneman N et al. N Engl J Med 2025; 392: 1065-1078

Gark S et al.

N Engl J Med 2025;
27;392:843-854

Schulz-Stüber S et al. Krankenhaushygiene up2date 2024; 19: 245–266

Vereinbarkeit von Nachhaltigkeit und Hygiene im Gesundheitswesen

Schulz-Stüber S et al. Krankenhaushygiene up2date 2024; Ausgabe 3 19 : 245–266. DOI: 10.1055/a-2276-6506

Auch Gesundheitseinrichtungen hinterlassen erhebliche ökologische Fußabdrücke. Durch gezielte Maßnahmen wie Energieeffizienz, Abfallreduktion und den Einsatz erneuerbarer Energien können Krankenhäuser nicht nur Betriebskosten senken, sondern auch ihre Umweltbelastung minimieren. Im Beitrag werden mögliche klimafreundliche Veränderungen im Gesundheitssektor vorgestellt und hinsichtlich ihrer Vereinbarkeit mit hygienischen Anforderungen bewertet.

KERNAUSSAGEN

- Das Thema Nachhaltigkeit im Gesundheitswesen weist aufgrund der Vielzahl an möglichen Stellschrauben ein hohes Maß an Komplexität, aber auch Möglichkeiten auf.
- Zahlreiche Maßnahmen können ohne Einschränkungen bei den hygienischen Anforderungen oder bei der Arbeitssicherheit umgesetzt werden.
- Nicht immer sind es die großen Investitionen, die ihren Beitrag zur Reduktion des CO2-Ausstoßes leisten (der global mit 4,4% durch den Gesundheitssektor verursacht ist) – auch viele kleinere Maßnahmen sind ohne hohen Kostenaufwand, dafür aber mit großem Nachhaltigkeitspotenzial umsetzbar, wie z.B. Fahrrad statt Auto, Treppenlaufen statt Fahrstuhlbenutzen u.Ä.
- Ähnlich wie in der Händehygieneadhärenz spielt Verhaltensmodifikation bei der Implementierung von Nachhaltigkeitsprojekten eine entscheidende Rolle. Jeder einzelne kann einen entscheidenden Beitrag im Alltag leisten.
- Großes praktisches Einsparpotenzial ergibt sich beispielsweise bei medizinischen Einmalhandschuhen.

Scope 3 Emissionseinsparung bei Lieferund Versorgungsketten

Abb. 3 Scope 3: Emissionseinsparung bei Liefer- und Versorgungsketten, Wasserverbrauch, Wasserverschmutzung. PVC = Polyvinylchlorid

Kosten:					
	niedrig	0 bis ca. 5000 €			
	mittel	ca. 5000–50 000 €			
	hoch	ca. >50 000 €			

Einsparungen:				
	niedrig	0 bis ca. 5000 €		
	mittel	ca. 5000–50000 €		
	hoch	ca. >50 000€		

Maßnahme	Hygienisch vertretbar	Nachhaltigkeits-	Kosten für	Kostenein-
	,,,	potenzial	Veränderung	sparung nach Veränderung
von Flaschen auf Trinkwasserbrunnen mit wiederauf- bereitbaren Flaschen umsteigen	ja, wenn Reinigung , Wartung und Bepro- bung geklärt			
auf Produkte mit umwelttoxischen Inhaltsstoffen verzichten (z.B. Mikroplastik, Parabene, Octocrylen etc.)	ja, wenn Wirksamkeit vergleichbar			
Verwendung von ökologisch abbaubaren Reinigungs- mitteln	ja, wenn Reinigungsleis- tung gewährleistet ist			
Verwendung von Konzentraten bei Reinigungsprodukten	ja, wenn Dosierung korrekt			
regionale Dienstleister bevorzugen (Wäsche, Lieferanten, Nahrungsmittel)	ja			
saisonale Produkte verwenden	ja			
Verwendung von Bioprodukten	ja			
Beatmungsschläuche im OP mit Filter anwenden (erhöht die Standzeit auf 7 Tage)	ja (Voraussetzung: Filter, außen desinfizieren nach jedem Gebrauch)			
beim Gebrauch von Einwegmaterial solches aus Polypropy- len oder Silikon bevorzugen statt PVC+Weichmacher	ja			
vorgerichtete Notfallmedikamente nur durch Apotheke zubereiten	ja			
Mehrweg statt Einweg, z.B. OP-Kittel OP-Abdecktücher chirurgische Instrumente Larynxspatel Larynxmasken Bronchoskope	individuell prüfen, je nach Bereich	(Müllproduktion versus Wasser-, Strom- und Reini- gungsmittel Verbrauch durch Life Cycle Assess- ment überprüfen)		(Aufberei- tungskosten)
bei Anschaffung bereits Wiederverwertbarkeit berücksichtigen	ja			
intensivere Nutzung von Medizingeräten durch Geräte-Sharing	ja, wenn Aufbereitung geklärt			
Nutzungsdauer von Medizingeräten verlängern durch Refurbishing	ja			
Verwendung von nachhaltigen Textilien	ja			
nachhaltige Baustoffe verwenden	ja, wenn abschließend abwischbar			
Umstellung auf Recyclingpapier	ja			
Fleischangebot in der Küche reduzieren	ja			

Wasserverbrauch reduzieren und sonstige Maßnahmen

Abb. 4 Nachhaltigkeit: Wasserverbrauch reduzieren (b) und sonstige Maßnahmen (c)

ŀ	Kosten:					
		niedrig	0 bis ca. 5000 €			
		mittel	ca. 5000-50 000 €			
		hoch	ca. >50 000 €			

niedrig 0 bis ca. 5000 € mittel ca. 5000–50000 € hoch ca. >50 000€

Mein Fazit: Lesen, weitergeben, nutzen und umsetzen!

Ь	Nachhaltigkeitsthema:	Wasserverbrauch reduzieren

Maßnahme	Hygienisch vertretbar	Nachhaltigkeits- potential	Kosten für Veränderung	Kosteneinsparung nach Veränderung
Rückbau von Waschbecken statt Spülplänen	ja			
bei Neubauten Duschen und Waschbecken nur da, wo unabdingbar, einbauen	ja			
Auslaufmenge an Waschbecken begrenzen	ja, wenn nach Berücksichtigung der Rohrlänge und -dimension Wasseraustausch alle 72 h gewähr- leistet ist.			
Wäscheverbrauch optimieren	individuell prüfen			
Patienten zum Wassersparen animieren (z.B. Aufkleber wie im Hotel)	ja, Cave Legionellen			
Regenwasserzisternen für die Außenbewässerung	ja			
Taktbandspülmaschinen mit Wasserrückgewinnung	ja			
Regenwasserzisternen für Toilettenspülungen	individuell prüfen			
Außenflächen entsiegeln (Wiese, Kies, Rasengitter etc. statt Beton und Pflastersteine) – dadurch auch schnellere abendliche Abkühlung im Sommer	ja			
Vorreinigung von Abwässern vor Einleitung in die Kläranlage	ja			

c Sonstige Maßnahmen

Maßnahme	Hygienisch vertretbar	Nachhaltigkeits- potenzial	Kosten für Veränderung	Kosteneinsparung nach Veränderung
Fassadenbegrünung zur Beschattung	ja, wenn Fliegengitter			
Blühwiesen rund um die Klinik	ja			
Dachbegrünung (entsiegelt die Dachfläche)	ja			
Posten des Klimaschutzbeauftragten schaffen und besetzen	ja			

Best Paper : Potpourri

- REIN SUBJEKTIVE AUSWAHL -

Catho G et al.

Antimicrob Resist

Infect Control 2024;
13: 28

Daneman N et al. N Engl J Med 2025; 392: 1065-1078

Zahavi I et al. Clin

Microbiol Infect 2025;
1263-1271

Gark S et al.

N Engl J Med 2025;
27;392:843-854

Schulz-Stüber S et al. Krankenhaushygiene up2date 2024; 19: 245–266

Short vs. long antibiotic treatment for pyelonephritis and complicated urinary tract infections: a living systematic review and meta-analysis of randomized controlled trials

Zahavi I et al. *Clin Microbiol Infect* 2025; 1263-1271. DOI: 10.1016/j.cmi.2025.04.008

Ziel

Evidenzsynthese für die optimale Therapiedauer der Pyelonephritis oder des fieberhaften komplizierten Harnweginfektes durch ein "living systematic review".

Vorgehen

- Standard für systematisches Review
- Living review searches will be updated monthly and the evidence yearly. Updates will be available at https://github.com/LivingSystematicReview/Pyelonephritis-KeepItShort.

Einschlusskriterien: RCT, Erwachsene Patienten, o.g. Krankheitsbilder

Primärer Endpunkt: klinischer Erfolg 7 Tage nach Behandlungsende

Intervention

- unterschiedliche Therapiedauern bei identischer Antibiotikaklasse oder Behandlungsstrategie
- Datensynthese unter Bildung von Risk Ratios
- es war ein moderater risk-of-bias in den moisten RCT festzustellen (dropouts, keine Verblindung)

	Shor		Long			Risk Ratio	Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% CI	M-H, Fixed, 95% CI
1.1.1 7 vs. 14 days							
De Gier R 1995	11	18	11	16	1.1%	0.89 [0.54, 1.46]	
Lafaurie M 2023	110	115	125	125	11.4%	0.96 [0.92, 1.00]	
Molina J 2022	63	66	56	62	5.5%	1.06 [0.96, 1.16]	+
Rudrabhatla P 2018	27	27	27	27	2.6%	1.00 [0.93, 1.07]	+
Sandberg T 2012	71	73	80	83	7.1%	1.01 [0.95, 1.07]	+
van Nieuwkoop C 2017	85	94	94	99	8.7%	0.95 [0.88, 1.03]	-+
von Dach E 2020	99	105	111	116	10.0%	0.99 [0.93, 1.05]	-
Yahav D 2019	121	212	111	199	10.9%	1.02 [0.86, 1.21]	
Subtotal (95% CI)		710		727	57.4%	0.99 [0.95, 1.03]	•
Total events	587		615				
Heterogeneity: Chi² = 6.13			$(2); I^2 = 0\%$				
Test for overall effect: Z =	0.47 (P=	0.64)					
1.1.2 5 vs. 10 days							
Dinh A 2017	28	30	36	38	3.0%	0.99 [0.87, 1.11]	
Klausner HA 2007	80	94	79	98	7.4%	1.06 [0.93, 1.20]	
Peterson J 2008	262	317	237	302	23.1%	1.05 [0.97, 1.14]	+-
Ren H 2017	69	72	66	69	6.4%	1.00 [0.93, 1.07]	+
Subtotal (95% CI)		513		507	39.8%	1.04 [0.99, 1.10]	◆
Total events	439		418				
Heterogeneity: Chi ² = 2.04	4, df = 3 (F	P = 0.57	r); $I^2 = 0\%$	5			
Test for overall effect: Z=	1.46 (P =	0.15)					
1.1.4 7 vs. 21 days							
Jernelius H 1988	29	32	28	29	2.8%	0.94 [0.82, 1.07]	
Subtotal (95% CI)	23	32	20	29	2.8%	0.94 [0.82, 1.07]	
Total events	29		28				
Heterogeneity: Not applica			20				
Test for overall effect: Z=		0.34)					
	J.30 (2.01/					
		1255		1263	100.0%	1.01 [0.98, 1.04]	*
Total (95% CI)							
Total (95% CI) Total events	1055	1200	1061				
Total events				7%			0,7 0,05
	97, df = 12	2 (P = 0		7%			0.7 0.85 1 1.2 1.5 Favours long Favours short

Fig. 2. Clinical success for short vs. long antibiotic treatment duration (RR > 1 favours short treatment). Forest plot subgrouped by treatment durations in the short and long-treatment groups. RR, risk ratio; M-H, Mantel—Haenszel.

I. Zahavi et al. / Clinical Microbiology and Infection 31 (2025) 1263-1271

	Shor	rt	Long	g		Risk Ratio	Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% CI	M-H, Fixed, 95% CI
Daneman N 2024	84	751	99	758	85.5%	0.86 [0.65, 1.12]	
Dinh A 2017	0	43	0	45		Not estimable	2.5
Klausner HA 2007	0	146	0	166		Not estimable	
Molina J 2022	1	69	5	64	4.5%	0.19 [0.02, 1.55]	
Peterson J 2008	1	543	1	559	0.9%	1.03 [0.06, 16.42]	-
van Nieuwkoop C 2017	0	97	1	103	1.3%	0.35 [0.01, 8.58]	-
von Dach E 2020	4	105	3	116	2.5%	1.47 [0.34, 6.43]	-
Yahav D 2019	10	212	6	199	5.4%	1.56 [0.58, 4.22]	- 1
Total (95% CI)		1966		2010	100.0%	0.87 [0.68, 1.13]	•
Total events	100		115				
Heterogeneity: Chi ² = 4.2	0, df = 5 (F	P = 0.52	2); $I^2 = 0\%$	6			0.02 0.1 1 10 50
Test for overall effect: Z=	1.04 (P =	0.30)	-55				0.02 0.1 1 10 50 Favours short Favours long

Fig. 3. Death for short vs. long antibiotic treatment duration (RR < 1 favours short treatment). RR, risk ratio; M-H, Mantel-Haenszel.

Table 2Subgroup analysis of primary outcome and secondary outcomes

Outcome	No. of trials	No. of patients	RR (95% CI)	I^{2} (%)
Clinical success	13	2518	1.01 (0.98-1.04)	7
Clinical success—males	4	722	0.97 (0.91-1.04)	41
Clinical success—females	5	773	1.04 (0.97-1.11)	0
Clinical success—quinolones	8	1643	1.01 (0.97-1.05)	33
Clinical success—any antibiotic	5	875	1.01 (0.94-1.08)	0
Clinical success—bacteraemia	6	832	1.02 (0.95-1.10)	0
Clinical success—low to some risk of bias	11	2309	1.01 (0.98-1.05)	24
Clinical success—5-7 vs. 10-14 d	12	2457	1.01 (0.98-1.04)	11
Microbiological cure	10	1647	0.98 (0.94-1.02)	61
Relapse or reinfection	10	1680	1.19 (0.87-1.63)	0
Death	8	3976	0.87 (0.68-1.13)	0
Any adverse event	8	2407	1.03 (0.91-1.16)	0
Adverse events requiring discontinuation	5	810	0.55 (0.21-1.47)	0
Diarrhoea ^a	8	1427	0.71 (0.48-1.04)	0

RR > 1 favours short for success and cure; RR < 1 favours short for relapse, reinfection, and death. RR, risk ratio.

Mein Fazit: Therapiedauern von 5-7 Tagen als Standard reichen aus

^a Clostridiodes difficile infections were reported only in one bacteraemia trial (Yahav et al. [17], 2019), with no infections in the 7-day group and one infection in the 14-day group.

Catho G et al.

Antimicrob Resist

Infect Control 2024;
13: 28

Best Paper : Potpourri

- REIN SUBJEKTIVE AUSWAHL -

Daneman N et al. N Engl J Med 2025; 392: 1065-1078

Zahavi I et al. Clin Microbiol Infect 2025; 1263-1271

Gark S et al.

N Engl J Med 2025;
27;392:843-854

Brain D et al. *JAMA Network Open* 2025;
8: e258565

Schulz-Stüber S et al. Krankenhaushygiene up2date 2024; 19: 245–266

Economic Evaluation of Enhanced Cleaning and Disinfection of Shared Medical Equipment

Brain D et al. JAMA Network Open 2025; 8: e258565. DOI: 10.1001/jamanetworkopen.2025.8565

Ziel

Evaluation ob intensiviertes "besseres" Reinigen/Desinfizieren geteilter Medizinprodukte / Gebrauschsmaterialien Kosten- effektiv ist

Vorgehen

- Ökonomische Evaluation innerhalb einer stepped-wedge cluster randomisierten Studie CLEEN
- 5002 Krankenhauspatienten, 10 Stationen (Erwachsene), Australien 03/23-11/23.
- Perspektive der Krankenhauskosten, Australische Dollar
- Entscheidungsbaum Modell

Interventionen (CLEEN): Zusätzliche Zeit für Reinigung/Desinfektion, Ausbildung, Audits, Feedback

Endpunkt: Inkrementelles Kosten-Nutzen-Verhältnis, bei dem die mittlere Veränderung der mit der Intervention verbundenen Kosten durch die mittlere Veränderung der Ergebnisse geteilt wird

• 5002 Patienten, mittleren Lebensalter 71.6 [16.1] Jahre

Table 2. Cost-Effectiveness Analysis for 1000 Patients

Group	Total costs, \$AUD ^a	Total HAIs	Change in costs, \$AUD	HAIs avoided	ICER
Usual care	2 155 310	130	NA	NA	NA
Intervention	1513000	100	-642 010	30	Dominant ^b

Abbreviations: ICER, incremental cost-effectiveness ratio; NA, not applicable.

Autorenfazit: Intervention hat 90.5% Chance Kosten einzusparen

^a Total costs refer to staff time, education, training, material development, consumables and/or equipment, treatment, medications, and patient length of stay. In usual care, the costs were related to length of stay.

^b Due to the intervention's reduction in costs and HAIs, usual care is said to be dominated by the intervention.

Catho G et al.

Antimicrob Resist

Infect Control 2024;
13: 28

Best Paper : Potpourri

- REIN SUBJEKTIVE AUSWAHL -

Daneman N et al. N Engl J Med 2025; 392: 1065-1078

Zahavi I et al. Clin Microbiol Infect 2025; 1263-1271

Gark S et al.

N Engl J Med 2025;
27;392:843-854

Brain D et al. *JAMA Network Open* 2025;
8: e258565

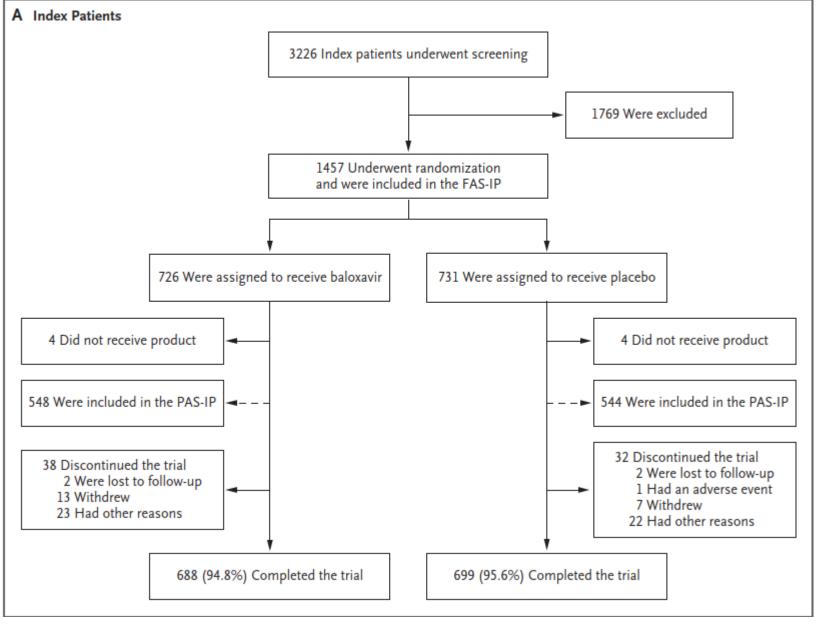
Schulz-Stüber S et al. Krankenhaushygiene up2date 2024; 19: 245–266

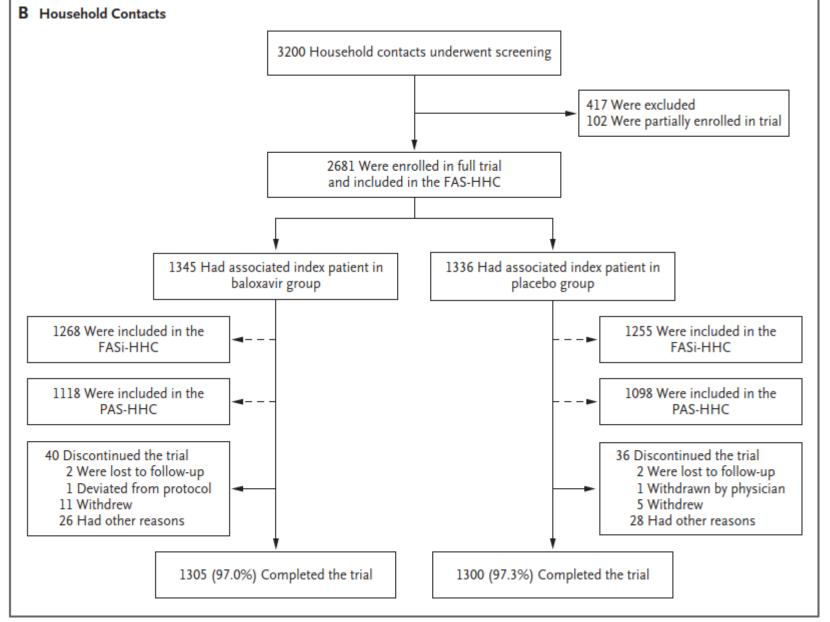
Monto A et al. N Engl J Med 2025; 392:1582-93

Efficacy of Baloxavir Treatment in Preventing Transmission of Influenza

Monto A. et al. N Engl J Med 2025;392:1582-93. DOI: 10.1056/NEJMoa2413156

Ziel

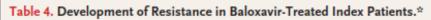

Baloxavir marboxil (baloxavir) reduziert schnell die Ausscheidung infektionstüchtiger Influenzaviren


Hypothese: Baloxavir reduziert Übertragungen

N.B.: Therapiestudien mit neuraminidasehemmern konnten keine hinreichende Evidenz zur Verminderung von Transmissionen aufzeigen

Vorgehen

- Phase 3b Studie in mehreren Ländern, um die Effektivität einer Einzeldosis/gabe von Baloavir auf die Übertragung an Haushaltsmitglieder zu untersuchen
- Influenza-positive Indexpatienten (5-64 J.) wurden zufällig randomisiert (1:1) auf Verum bzw. Placebo mit der Erstgabe binnen 48h nach Symptombeginn
- Primärer Endpunkt war die labordiagnostisch gesicherte Transmission von Influenzavirus von der Indexperson auf einen Haushaltskontakt binnen 5 Tagen



Ergebnisse

- Laborgesicherte Übertragung von Influenza erfolgte signifikant seltener in der baloxavir Gruppe im Vergleich zur Placebogruppebo (adjusted incidence, 9.5% vs. 13.4%; adjusted odds ratio, 0.68; 0.50 0.93; P=0.01)
- Als relative Risikoreduktion ausgedrückt: 29% (CI 95, 12 45)
- Für die symptomatischen Influenzaübertragungen zeigte sich ein Trend mit 5,8% vs. 7.6% (adjusted odds ratio, 0.75; 0.50 to 1.12; P=0.16)
- Das Auftreten resistenter Virussubspecies während des Follow-ups lag in der Baloxavirgruppe bei den Indexpatienten bei 7.2% (95% CI, 4.1-11.6) ohne Nachweis einer Resistenz bei den Haushaltskontakten
- es gab zu keinerlei relevante unerwünschte Nebeneffekte

Autoren(=Mein) fazit: "Treatment with a single oral dose of baloxavir led to a lower incidence of transmission of influenza virus to close contacts than placebo."

Patients and Substitution	Influenza A(H1N1pdm09)	Influenza A(H3N2)	Influenza B	Total†
All baloxavir-treated index patients — no.	69	88	53	208
Any PA 138X or T20K substitution at baseline — no. (%)	0	0	0	0
Any PA I38X or T20K substitution that emerged during follow-up — no. (%);	5 (7.2)	10 (11.4)	0	15 (7.2)
Baloxavir-treated index patients <12 yr of age — no.	4	18	3	25
Any PA 138X or T20K substitution that emerged during follow-up — no. (%);	1 (25.0)	3 (16.7)	0	4 (16.0)
PA I38N — no. (%)	1 (25.0)	0	0	1 (4.0)
PA 138T — no. (%)	0	3 (16.7)	0	3 (12.0)
PA 138T and 1381 — no. (%)	0	1 (5.6)∫	0	1 (4.0)
Baloxavir-treated index patients ≥12 yr of age — no.	65	70	50	183
Any PA 138X or T20K substitution that emerged during follow-up — no. (%);	4 (6.2)	7 (10.0)	0	11 (6.0)
PA I38M — no. (%)	0	1 (1.4)	0	1 (0.5)
PA 138T — no. (%)	3 (4.6)	6 (8.6)	0	9 (4.9)
PA 138T and 1381 — no. (%)	1 (1.5)	0	0	1 (0.5)

^{*} The index patients in this analysis include all of those who had samples that were obtained before and after administration of baloxavir for sequencing analysis. PA denotes polymerase acidic protein.

Mein Fazit:

Welche Patienten, welche Konstellation profitiert am meisten? Wo überwiegt die Resistenzselektion? Sehr gute Intervention im Krankenhaus, Seniorenheim,...?

[†] The results for index patients with mixed influenza infection are presented within each influenza type and subtype but are only counted once in the overall summary and are only presented for the virus types for which paired samples are available for analysis.

[†] T20K substitutions were considered for influenza B only.

This index patient with influenza that involved a PA 138T and 138I substitution mix is also counted within the PA 138T row of the table.

- REIN SUBJEKTIVE AUSWAHL -

Catho G et al.

Antimicrob Resist

Infect Control 2024;
13: 28

Daneman N et al. N Engl J Med 2025; 392: 1065-1078

Zahavi I et al. Clin Microbiol Infect 2025; 1263-1271

Berger A et al. Euro Surveill 2025; 10;30:2500116

Gark S et al.

N Engl J Med 2025;
27;392:843-854

Brain D et al. *JAMA Network Open* 2025;
8: e258565

Schulz-Stüber S et al. Krankenhaushygiene up2date 2024; 19: 245–266

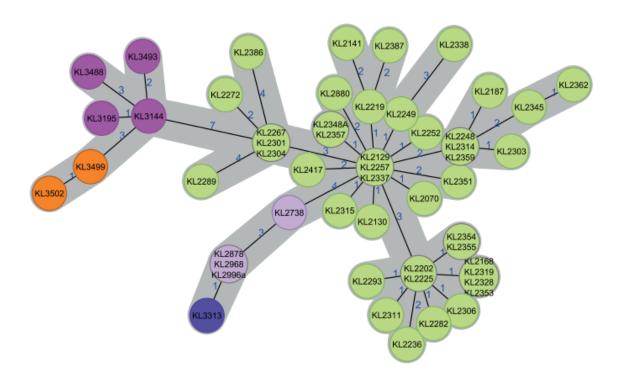
Monto A et al. N Engl J Med 2025; 392:1582-93

Autochthonous outbreak of respiratory diphtheria caused by *Corynebacterium diphtheriae*, Germany, September 2024

Berger A. et al. Euro Surveill. 2025; 10;30:2500116. doi: 10.2807/1560-7917.

Ziel

Ausbruchsanalyse


Vorgehen oder was ist passiert?

- Schulkind/ Jugendliche/r (P1) erkrankt in 09/2024 sehr schwer an respiratorisch verlaufender Diphtherie
- P1 ist ungeimpft, P1 verstirbt an der Erkrankung
- Mutter (P2) hatte 9 Tage vor Symptomen von P1 milde Symptome i.S. Pharyngitis P2 wurde nach Diagnose bei P1 positive auf *Corynebacterium diphtheriae* getestet

FIGURE

Minimum spanning tree of core genome multilocus sequence typing analysis of isolates of *Corynebacterium diphtheriae*, Germany, 2022-2024 (n = 54)

- 1 Strains of the child and mother (P1 and P2) with respiratory diphtheria
- 2 Strains of persons experiencing homelessness (P3-P6) with deep wound infections and cutaneous diphtheria (Northern Germany, 2024)
- 3 Strains of persons experiencing homelessness with cutaneous diphtheria (Frankfurt a. Main 2023)
- 4 Strain of a person experiencing homelessness with cutaneous diphtheria (Frankfurt a. Main 2024)
- 5 Strains of newly arriving migrants involved in the 2022 outbreak

cg MLST: core genome multilocus sequence typing.

cg MLST analysis was based on a scheme of 1,553 *Corynebacterium diphtheriae*-specific target loci. Isolates from the two outbreak cases and genetically related cases of a cluster from the same sequence type, comprising mainly isolates obtained from newly arriving migrants, including two subclusters of isolates from persons experiencing homelessness.

Characteristics of patients with toxigenic *Corynebacterium diphtheriae* isolates, a metropolitan area in Germany, 2024 (n = 6)

Patient	Isolate ID	Month of sampling	AMR	ST	СТ	Patient age group (years)	Country of origin	Clinical manifestation	Vaccination against diphtheria ^a	Hospitalisation	Exposures of interest		
P1	KL3499	Sep						10-14	Germany	Severe respiratory diphtheria	Unvaccinated	Yes	Visited city where cases of diphtheria among people experiencing homelessness had occurred in 2024
P2	KL3502	Sep	Cotrimoxazole	574	79	50-59	Germany	Mild respiratory diphtheria	Basic vaccination completed, subsequent boosters, last booster vaccination in 2010	No	Mother of P1, no other relevant exposure reported		
P ₃	KL3144	Jul				50-59				Yes			
P ₄	KL3195	Feb				60-69	40-49 Unknown	Unknown Cutaneous diphtheria	Cutaneous	Unknamm	Yes, reason unknown	Experiencing	
P ₅	KL3488	Sep				40-49				diphtheria	Unknown	Yes	homelessness
P6	KL3493	Sep				40-49				Yes, for another reason			

AMR: antimicrobial resistance; CT: complex type; GNCLD: German National Consiliary Laboratory on Diphtheria; ID: identification code; ST: sequence type; R: resistant.

^a Vaccination status including any vaccine containing diphtheria toxoid.

Ergebnis:

Erster autochthoner (Deutschland) Ausbruch seit 1984 (!), epidemiologisch und molekularbiologisch bestätigt.

Enge molekulare Verwandtschaft der Ausbruchsisolate

- mit Isolaten von (obdachlosen) Patienten mit kutaner Infektion (2023, 2024)
- mit Isolaten von neu ankommenden Migrant*innen in Europa (2022)

Mein Fazit:

- Übertragungspotential bei kutaner und respiratorischer Erkrankung
- Übertragung auch bei milden Verläufen (warum auch nicht)
- potentiell tödlich verlaufende Infektionskrankheit
- Impfpräventabel, hohe Durchimpfungsrate essentiell
- klassisches Re-Emerging Disease
- auf keinen Fall Argument GEGEN Migration
- sind wir / Sie vorbereitet?

Catho G et al.

Antimicrob Resist

Infect Control 2024;
13: 28

Best Paper : Potpourri

- REIN SUBJEKTIVE AUSWAHL -

Daneman N et al. N Engl J Med 2025; 392: 1065-1078

Zahavi I et al. Clin Microbiol Infect 2025; 1263-1271

Berger A et al. Euro Surveill 2025; 10;30:2500116

Gark S et al.

N Engl J Med 2025;
27;392:843-854

Brain D et al. *JAMA*Network Open 2025;
8: e258565

Salzberger B et al.

Krankenhaushygiene
up2date 2024;
19: 361-385

Schulz-Stüber S et al. Krankenhaushygiene up2date 2024; 19: 245–266

Monto A et al. N Engl J Med 2025; 392:1582-93

Salzberger B et al. *Krankenhaushygiene up2date* 2024; Ausgabe 4 19: 361-385. DOI: 10.1055/a-2305-9374

KERNAUSSAGEN

- Die Infektionsepidemiologie hat die moderne Epidemiologie begründet und ist heute eine von deren Teildisziplinen mit speziellen Methoden.
- Die deskriptive Infektionsepidemiologie beschäftigt sich mit dem "Wer, Wo und Wann" des Auftretens von Infektionen – dabei kann die Formulierung passender Falldefinitionen ein komplexes Problem darstellen.
- Verschiedene Infektionen haben charakteristische Zeitverläufe, z.B. die Intervalle von Infektion zu Infektiosität (Latenzzeit), von Infektion bis zum Auftreten von Symptomen (Inkubationszeit) sowie infektiöses Intervall und Generationszeit, die für Übertragungen von Bedeutung sind.
- Mathematische Modelle zum Ablauf von Infektionsketten oder ausbrüchen sind heute weit entwickelt und können sowohl Ausbrüche wie auch den Einfluss von Interventionen gut modellieren
- Die gebräuchlichsten Modelle sind SIR und SEIR-Modelle, die Übergangswahrscheinlichkeiten zwischen den Zuständen empfänglich ("susceptible"), exponiert/latent infiziert ("exposed"), infiziert und genesen/immun ("recovered") benutzen.
- In der Anwendung auf die Realität müssen die Grenzen der benutzten Modelle beachtet werden.
- Exakte und zeitnahe Datengewinnung ist eine wichtige Voraussetzung für zielgerichtete Interventionen bei Infektionsausbrüchen.
- Die basale Reproduktionszahl R0 (die durchschnittliche Zahl von durch eine infizierte Person angesteckten Personen in einer Bevölkerung ohne Immunität) ist ein zentrales Konzept in der Infektionsepidemiologie, aus dem sich auch der notwendige Herdenschutz ableiten lässt, was wiederum Impfkampagnen besser planbar macht.

Infektionsepidemiologie: eine Einführung in Methoden, Modelle und Kennzahlen

UNIVERSITÄTSMEDIZIN **UMG**

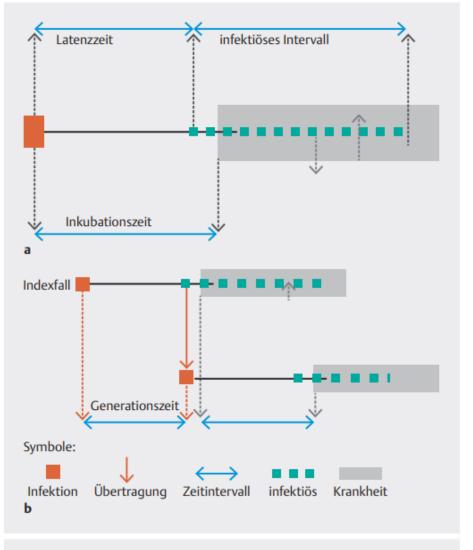
Salzberger B et al. *Krankenhaushygiene up2date* 2024; Ausgabe 4 19: 361-385. DOI: 10.1055/a-2305-9374

Ziel

Niedrigschwelliger Kompetenzerwerb / Wiederholung des Alltagswekzeugs im Fach Hygiene

Vorgehen

- Vorstellung der wichtigsten Methoden, Modelle und Kennzahlen (Parameter) der Infektionsepidemiologie
- Unterlegung durch passende Beispiele
- die Leser*innen sollen möglichst wenig auf Formeln und Ableitungen angewiesen sein


► Tab. 1 Parameter/Kennzahlen für Infektionshäufigkeit und -ausbreitung.							
Parameter	Definition	Kritische Bedingungen zur Messung/mögl. Fehlerquellen					
Deskriptive einfache Paramet	Deskriptive einfache Parameter						
Inzidenz bzw. Inzidenzrate	Neuinfektion/-erkrankung als Rate: pro Zeiteinheit pro Bevölkerungseinheit, z. B./Jahr, und/100000 Einwohner	klare Falldefinition zeitgerechte Erfassung					
Prävalenz bzw. Prävalenzrate	Vorhandene Erkrankungen als Rate: pro Zeit- bzw. Bevölkerungseinheit	klare Falldefinition zeitgerechte Erfassung.					
Case-Fatality Rate	Todesfälle durch Erkrankung/Erkrankungsfälle	vollständige Erfassung Bewertung der Todesursache					
Infection-Fatality Rate	Todesfälle durch Infektion/Infektionsfälle	vollständige Erfassung Bewertung der Todesursache					
Mortalität	Todesfälle in einer Bevölkerung, auch mit speziellen Merkmalen (ohne Zuordnung einer Todesursache) pro Zeit- bzw. Bevölkerungseinheit	vollständige Erfassung Erfassung der Merkmale					
Zeitintervalle für Infektionen und Übertragungen							
Inkubationszeit	Zeitintervall von der Infektion bis zum Auftreten von Symptomen	Festlegung des Infektionszeitpunktes					
Latenzzeit	Zeitintervall von der Infektion bis zur Infektiosität	Festlegung des Infektionszeitpunktes Zeitpunkt des Erregernachweises					
infektiöses Intervall	Zeitintervall von Beginn bis Ende der Infektiosität	Genaue Bestimmung der Zeitpunkte durch wieder- holte Erregernachweise Zeitpunkt Nachweis des Erregers Ende der Ausscheidung					

▶ Tab. 1 Parameter/Kennzahlen für Infektionshäufigkeit und -ausbreitung.				
Parameter	Definition	Kritische Bedingungen zur Messung/mögl. Fehlerquellen		
Parameter für Infektionsmod	elle			
R ₀	basale Reproduktionszahl; durchschnittliche Zahl der durch eine infizierte Person infizierte Kontakte in einer vollständig empfänglichen Population	genaue Erfassung von Infektionsketten bei Ableitung aus Ausbruchsverlauf genaue Kenntnis der verbundenen Parameter		
R _t	aktuelle Reproduktionszahl; durchschnittliche Zahl der durch eine infizierte Person aktuell neu infizierten Personen			
Dispersionskoeffizient	Maß dafür, wie gleichmäßig Infizierte weitere Perso- nen infizieren (Koeffizient je kleiner, desto ungleich- mäßiger)	richtige Erfassung von Infektionsketten Erkennung von "Superspreading"		
Wachstumsrate	Rate des Anstiegs von Infektionszahlen pro Zeiteinheit	richtige Zuordnung zwischen Meldedaten und Krank- heitsdaten		
Verdopplungszeit	Zeitintervall, in dem sich die Zahlen der Neuinfektio- nen verdoppeln	richtige Zuordnung zwischen Meldedaten und Krank- heitsdaten		
R_0 = basale Reproduktionszahl; R_t = Reproduktionszahl zum Zeitpunkt t				

▶ Abb. 5 Zeitintervalle bei Infektionen bzw. Infektionskrankheiten.
a Indexfall; hier sind die Intervalle für einen individuellen Infektionsverlauf dargestellt. b Kontaktfall: Hier sind die Zeitintervalle für Kontaktfälle aufgeführt (mod. nach [7]). Latenzzeit = Intervall von Infektion bis zur Infektiosität; Inkubationszeit = Intervall von Infektion bis Symptombeginn; infektiöses Intervall = Intervall, in dem die Infektion weitergegeben werden kann; Generationszeit = Intervall zwischen Infektion des Indexfalls und des Kontaktfalls; serielles Intervall = Intervall zwischen Symptombeginn bei Indexfall und Symptombeginn des Kontaktfalls

Mein Fazit (aus Artikel):

Merke "Alle Modelle sind falsch, aber einige sind nützlich." (George Box, brit. Mathematiker, 1974)

Catho G et al.

Antimicrob Resist

Infect Control 2024;
13: 28

Best Paper : Potpourri

- REIN SUBJEKTIVE AUSWAHL -

Daneman N et al. N Engl J Med 2025; 392: 1065-1078

Zahavi I et al. Clin Microbiol Infect 2025; 1263-1271

Berger A et al. Euro Surveill 2025; 10;30:2500116

Gark S et al.

N Engl J Med 2025;
27;392:843-854

Brain D et al. *JAMA Network Open* 2025;
8: e258565

Salzberger B et al. Krankenhaushygiene up2date 2024; 19: 361-385

Schulz-Stüber S et al. Krankenhaushygiene up2date 2024; 19: 245–266

Monto A et al. N Engl J Med 2025; 392:1582-93

Lien Anh HD et al. *N Engl J Med*; 2025

DOI:10.1056/NEJMra2504516

Measles 2025

Lien Anh HD et al. N Engl J Med; 2025 DOI: 10.1056/NEJMra2504516

Ziel

Aktuelle Zusammenfassung über Klinik inkl. Komplikationen, Epidemiologie, Diagnostik inkl. Genotypisierung, Impfungen und aktuelle Empfehlungen

Vorgehen

Nicht systematischer, strukturierter Review z.T. aus US Perspektive (Empfehlungen)

Ergebnis

- Masernfälle, -übertragungen und Ausbrüche nehmen zu, u.a. bedingt durch geringere Impfraten während Coronapandemie (Ausfall der Impfprogramme, Impfmüdigkeit, Impfskepsis
- alle WHO Regionen melden seit 2024 Anstieg der Fallzahlen
- >50% hospitalisiert (Dunkelziffer?)
- Masernvirus ist extrem leicht übertragbar, primäre Fallreproduktionszahl: 12-18

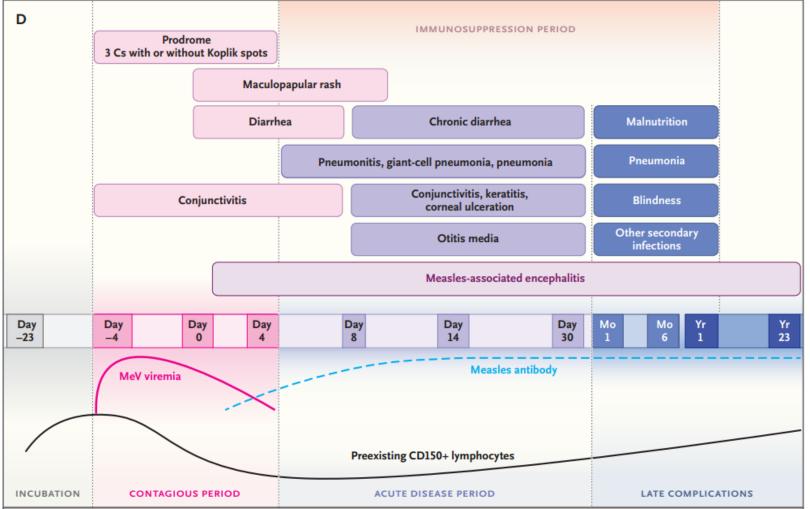


Figure 1. Clinical Features and Pathogenesis of Measles.

Features of measles include Koplik spots on the buccal mucosa (Panel A); rash on the trunk, spreading to the face, head, arms, and legs (Panel B); and conjunctivitis (Panel C). Day 0 denotes the day the measles rash appears; Day –4 is the probable start of infectiousness, Day 4 is the probable end of infectiousness, and Day –23 is the earliest possible exposure day (Panel D). CD150+ lymphocytes are T and B memory lymphocytes targeted by the measles virus. 3 Cs denotes cough, coryza, and conjunctivitis, and MeV measles virus. Images in Panels A, B, and C were provided by Du Tuan Quy, M.D., with the approval of Le Nguyen Thanh Nhan, M.D., Ph.D., Children's Hospital 1, Ho Chi Minh City, Vietnam.

Table 1. Incidence of Seve	ere Complications Associated with	Measles.
Complications	Incidence in Developed Countries	Comments
Pneumonia	1–6 per 100 measles cases ⁵	Among the most common complications during the first month of measles; most common cause of measles hospitalization
Diarrhea	8–10 per 100 measles cases ⁵	Common complication during the first month of measles
Keratitis or kerato- conjunctivitis	3–10 per 100 measles cases ^{6,9}	Keratoconjunctivitis may appear in the prodromal stages of measles and persist for as long as 3 months ⁶ ; keratitis with retinitis and optic neuritis also has been reported. ⁷⁻⁹
Corneal ulceration	Rare	Documented in 1–4 per 100 measles cases in the 1980s in Africa and South Asia ^{10,11} ; measles can cause corneal ulceration directly and facilitate a secondary infection (such as herpes simplex keratitis) that leads to corneal ulceration ^{10,11}
Blindness	Rare	Measles is a leading cause of childhood blindness in places where measles is endemic; results of surveys conducted in schools in Africa in the 1970s suggested that measles was the cause of 33 to 79% cases of blindness. ¹¹
Otitis media	7–9 per 100 measles cases ⁵	One of the most common complications during the first month of measles; car lead to sensorineural deafness, which was observed in 5 to 10% of measles cases in the United States before the introduction of measles vaccination programs ⁵
Death	1–3 per 1000 measles cases ⁵	16 per 1000 measles cases in low-income countries ¹² ; 9 per 1000 measles cases in middle-income countries ¹² ; up to 180 per 1000 measles cases reported in the context of humanitarian relief efforts during major outbreaks ¹³
Malnutrition	8–10 per 100 measles cases	
Acute postinfectious measles encephalitis	1 per 1000 measles cases ¹⁴	Develops within the first week of measles, after the appearance of the first symptoms, and is associated with 20% mortality ¹⁴
Measles-inclusion body encephalitis	1 per 1000 measles cases ¹⁴	Develops within 7 days to 6 months after onset of measles and is associated with 100% mortality 14
Subacute sclerosing panencephalitis	7–11 per 100,000 measles cases 5,14	Develops within 7–10 years after measles and is associated with 100% mortality within 1–3 years after onset 14 ; young children with measles (<2 years of age) are at increased risk

Table 3. U.S. Recommendations for Vitamin A Supplementation in Patients with Measles.*					
Age Group	Dose	Frequency			
Children					
<6 mo	50,000 IU (15,000 μg RAE)	Daily for 2 days			
6–11 mo	100,000 IU (30,000 μg RAE)	Daily for 2 days			
>12 mo	200,000 IU (60,000 μg RAE)	Daily for 2 days			
Previous vitamin A deficiency or eye complications caused by measles	Third dose	2–4 wk after the sec- ond dose			
Adults†	No recommenda- tion	No recommendation			

^{*} Adapted from Stinchfield PA and Orenstein WA.⁴¹ IU denotes international unit, and RAE retinol activity equivalents.

[†] The U.S. recommendation aligns with the World Health Organization (WHO) recommendation.⁴² However, the WHO recommends a dose of 5000 to 10,000 IU daily for 4 weeks in adult measles patients. Women of reproductive age should receive only lower, but more frequent, doses of vitamin A (e.g., a daily oral dose of 5000 to 10,000 IU of vitamin A for at least 4 weeks) owing to possible teratogenic effects.

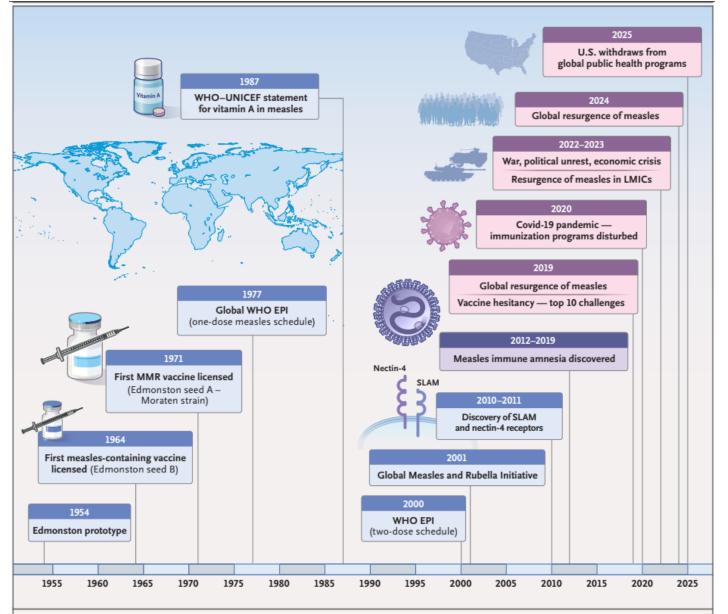


Figure 2. Key Events in Measles Research.

Covid-19 denotes coronavirus disease 2019, EPI Expanded Programme on Immunization, LMICs low- and middle-income countries, MMR measles—mumps—rubella, SLAM signaling lymphocytic activation molecule, UNICEF United Nations Children's Fund, and WHO World Health Organization.

Mein Fazit:

- sehr gute Lektüre, aber auch zum schnellen Nachlesen
- Hygiene etwas spärlich behandelt, aber Grundlagen für Entscheidungsfindung sehr gut dargestellt
- Situation
 besorgniserregend und
 Perspektive dramatisch

Catho G et al.

Antimicrob Resist

Infect Control 2024;

13: 28

Best Paper : Potpourri

- REIN SUBJEKTIVE AUSWAHL -

Daneman N et al. N Engl J Med 2025; 392: 1065-1078

Zahavi I et al. Clin Microbiol Infect 2025; 1263-1271

Berger A et al. Euro Surveill 2025; 10;30:2500116

Gark S et al. *N Engl J Med* 2025;

27;392:843-854

Brain D et al. *JAMA Network Open* 2025;
8: e258565

Salzberger B et al. Krankenhaushygiene up2date 2024; 19: 361-385

Schulz-Stüber S et al. Krankenhaushygiene up2date 2024; 19: 245–266

Monto A et al. N Engl J Med 2025; 392:1582-93

Lien Anh HD et al.

N Engl J Med; 2025

DOI:10.1056/NEJMra2504516

DANKE!