

"Der Einsatz von KI muss menschliche Entfaltung erweitern und darf sie

nicht vermindern. KI darf den Menschen nicht ersetzen."

Alena Buyx, Ethikrat (2023)

Künstliche Intelligenz trifft auf Fehlermeldesysteme – neue Perspektiven?

Dr. med Carlos R. Hölzing

Agenda

01 Hintergrund Fehlermeldesysteme (CIRS)

02 Herausforderungen der aktuellen Systeme

03 Potenziale durch Künstliche Intelligenz

04 Ausblick & Diskussion

Hochrisikobereich Medizin

Vermeidbare Risiken müssen sichtbar werden,

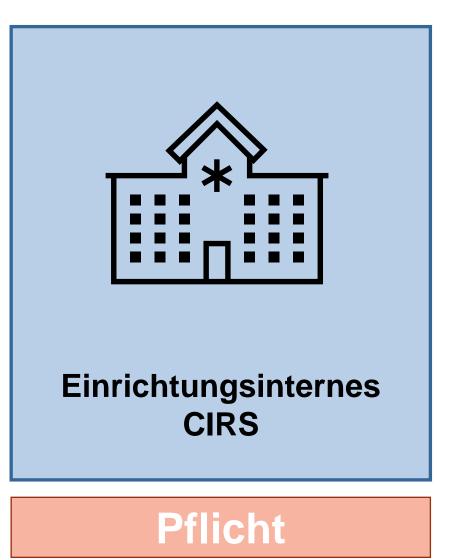
bevor sie zu Schäden führen

CIRS bzw. Fehlermeldesysteme

Critical Incident Reporting System

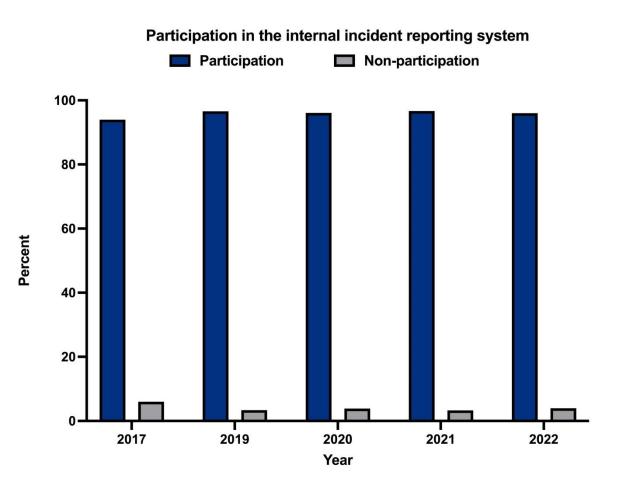
Berichtsystem zur anonymisierten Meldung von kritischen Ereignissen (critical incidents) und Beinahe-Schäden

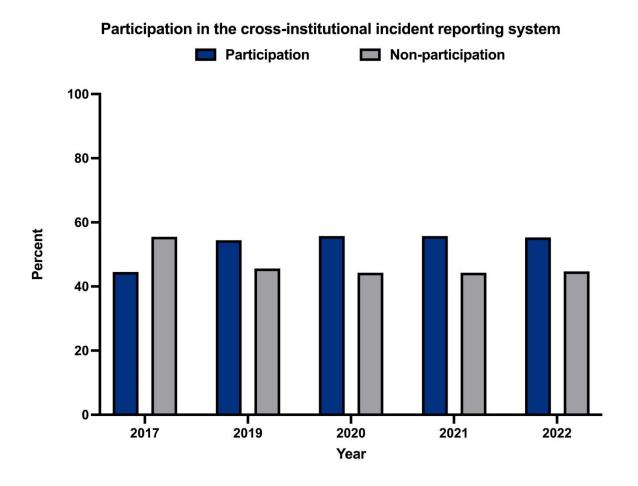
CIRS in Deutschland



Freiwillig

Teilnehmende Kliniken





Herausforderungen Risikomanager

- ► Kaum externe Weitergabe: 93 % übermitteln <10 % der Meldungen an einrichtungsübergreifende CIRS
- ▶ 71 % nutzen keine strukturierten Analysevorgaben
- ▶ In 57 % dauert es >4 Wochen bis zur Veröffentlichung
- ▶ Barrieren & Herausforderungen: Zeitmangel (29 %), geringer wahrgenommener Nutzen (36 %), Vertrauen in Anonymität (14 %)

Herausforderungen Anwendersicht

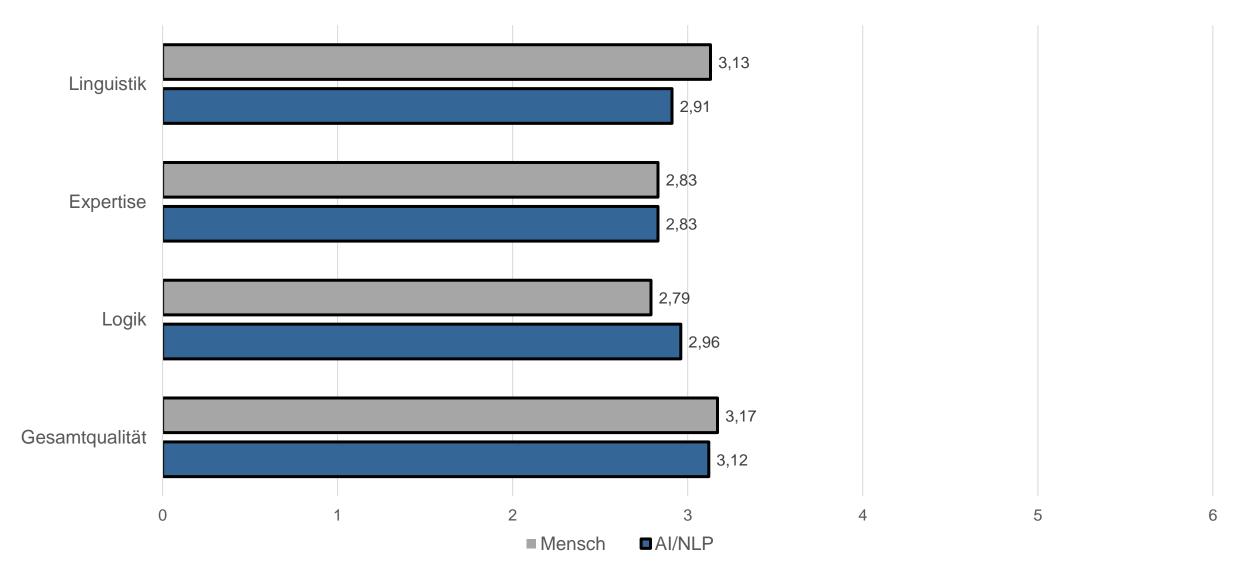
- ► CIRS wird oft nur als Schlagwort wahrgenommen
- ▶ Unklarheit über Abläufe und Prozesse
- Zweifel, ob die eigene Meldung überhaupt relevant ist
- Mangel an psychologischer Sicherheit beim Melden
- Negative Assoziationen mit CIRS (z. B. Angst vor Schuldzuweisung)

Status quo CIRS in der Praxis

CIRS bleibt hinter Erwartungen zurück

Potenziale durch Künstliche Intelligenz

Machbarkeitsanalyse der Fallrückmeldung



Hölzing, C. R., Rumpf, S., Huber, S., Papenfuß, N., Meybohm, P., & Happel, O. (2024). The Potential of Using Generative Al/NLP to Identify and Analyse Critical Incidents in a Critical Incident Reporting System (CIRS): A Feasibility Case—Control Study. Healthcare, 12(19), 1964. https://doi.org/10.3390/healthcare12191964

Generative KI im Kontext von CIRS

Generative KI ist stark in Sprachgenerierung

- Abhängigkeit vom Input
 - Ergebnisse hängen stark von der Qualität des Fallberichts ab

- Kein echtes Verstehen
 - KI generiert Text auf Basis statistischer
 Wahrscheinlichkeiten (Transformer-Architektur)

KI kann generative Rückmeldungen erstellen

Das Medikament war falsch

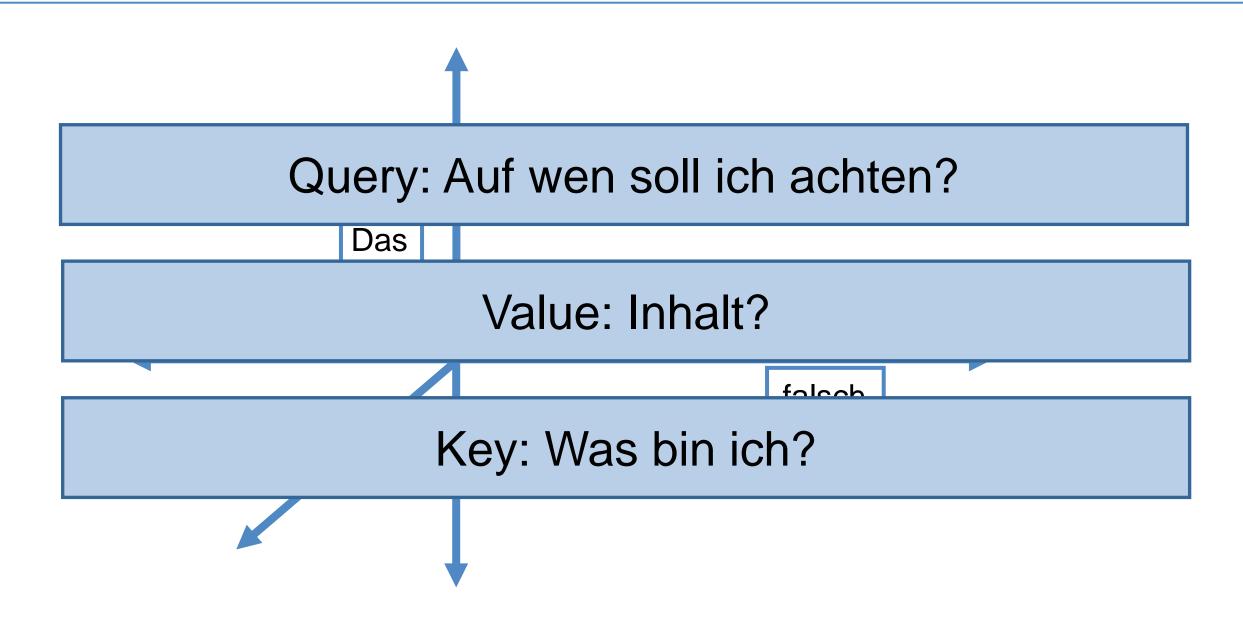
Das

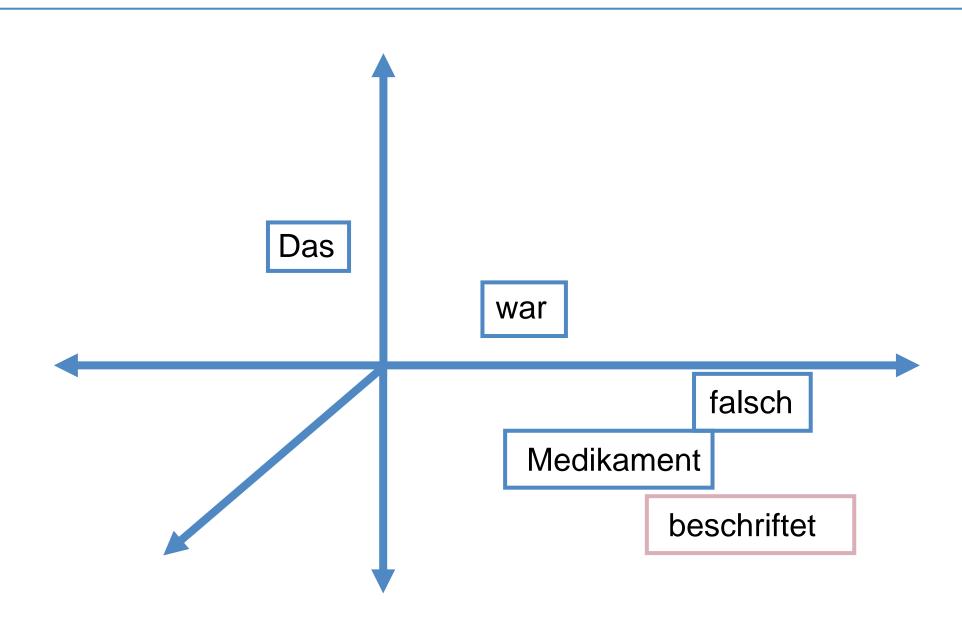
Medikament

war

falsch

Embedding = Übersetzung von Text in Vektoren





Das Medikament war falsch beschriftet

Einsatz von Künstlicher Intelligenz

Fallklassifizierung

Emotionserkennung

Mustererkennung

Fallklassifizierung

- Ausgangsproblem:
 - CIRS = unstrukturierte Freitextmeldungen
 - Keine einheitliche Klassifizierungsgrundlage

- Modelle
 - Baseline: Term Frequency Inverse Document Frequency

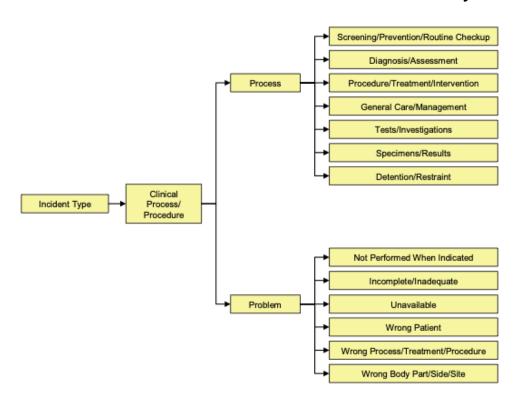
Fortgeschritten: Transformer (GBERT)

Fallklassifizierung Datengrundlage

Unterschiedliche und undurchsichtige Klassifizierungstaxonomie

World Health Organization

Conceptual Framework for the International Classification for Patient Safety



Uniklinikum Würzburg

Stabsstelle medizinisches Qualitäts-, Risiko- und Datenmanagement

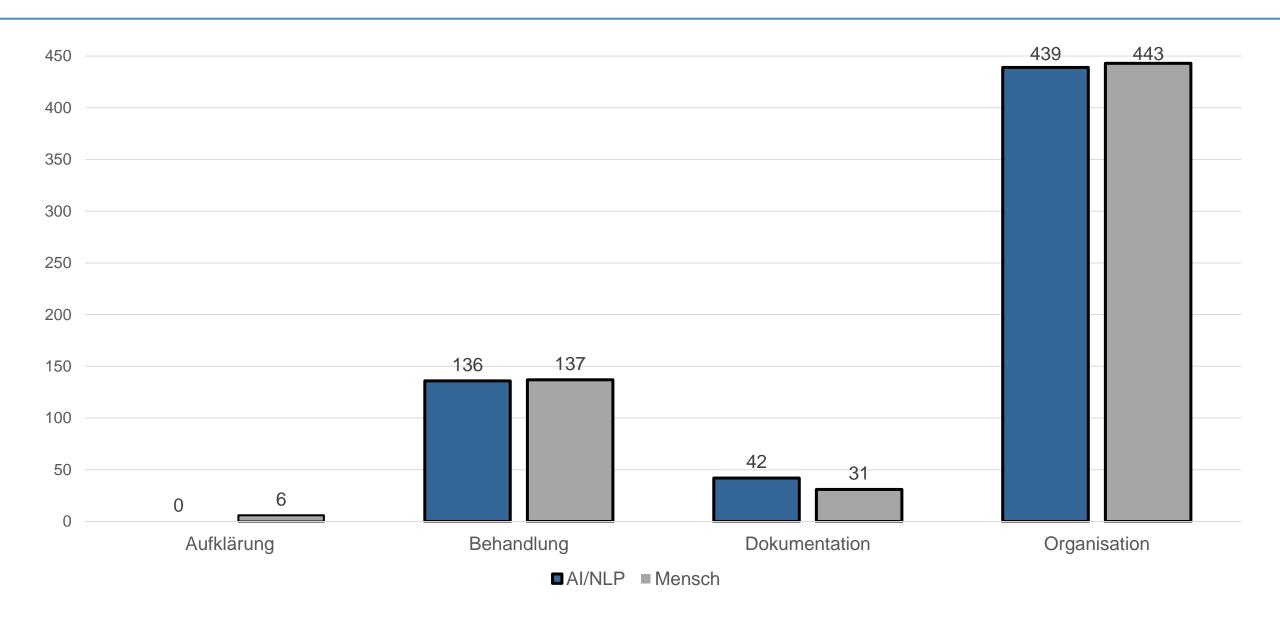
Aufklärung

Behandlung

Dokumentation

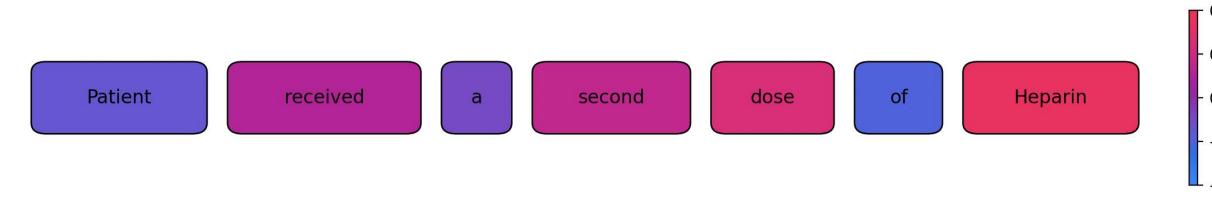
Organisation

Studie Fallklassifizierung



Studie Klassifizierung nachvollziehen

- ► SHapley Additive ExPlanations (SHAP) → Verfahren zur Modellinterpretation
- Misst den Beitrag jedes Wortes zur Klassifikation
- Farben zeigen positiven (magenta) oder negativen (blau) Einfluss



Studie Klassifizierung nachvollziehen

Aufklärung

Tokens wie meldete, Chirurg, danach

→ externe Zuschreibung, Hierarchie-Aspekte

Behandlung

Tokens wie Morphin, Medikationsverwechslung

Dokumentation

Selbstreflexive Wörter (ich, überprüfen, geschah)

Organisation

Tokens wie Hygiene, Datenschutz, Standards

→ zeigen systemische Schwächen

Potentiale automatische Fallklassifizierung

► Transformer (GBERT) deutlich überlegen

► Erklärbarkeit durch SHAP → klinisch plausible Einsichten

KI-Klassifizierung ist möglich, schwierig bei seltenen Klassen und unvollständigen Input

- ▶ Datenlimit (seltene Klassen) → unsicheres Modell
- Black-Box-Charakter

Emotionserkennung

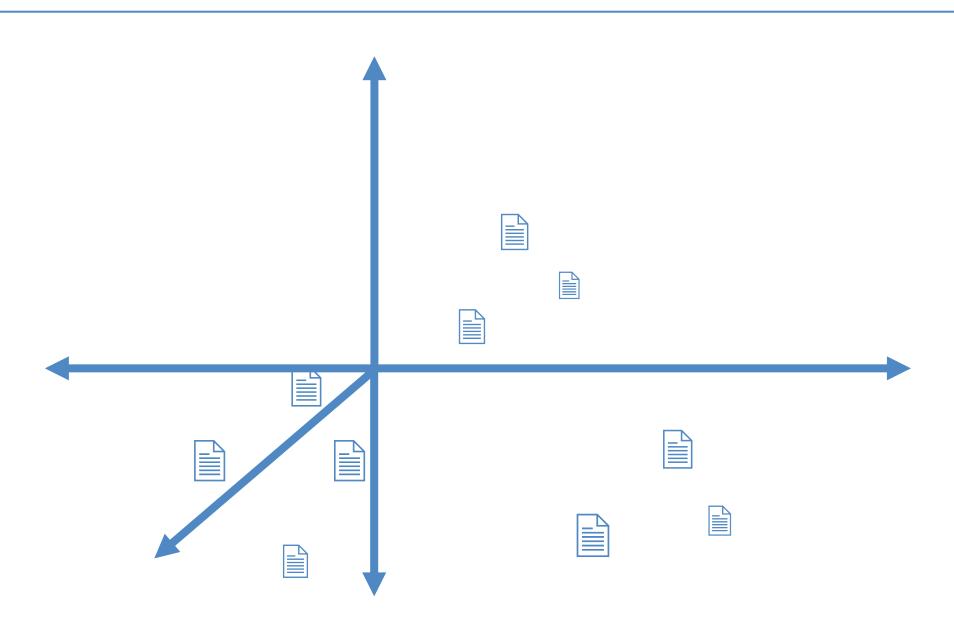
- CIRS = bisher Fokus auf Struktur & Inhalte
- ► Emotionale Signale kaum untersucht, obwohl entscheidend für Risiko-Wahrnehmung & Safety-Kultur

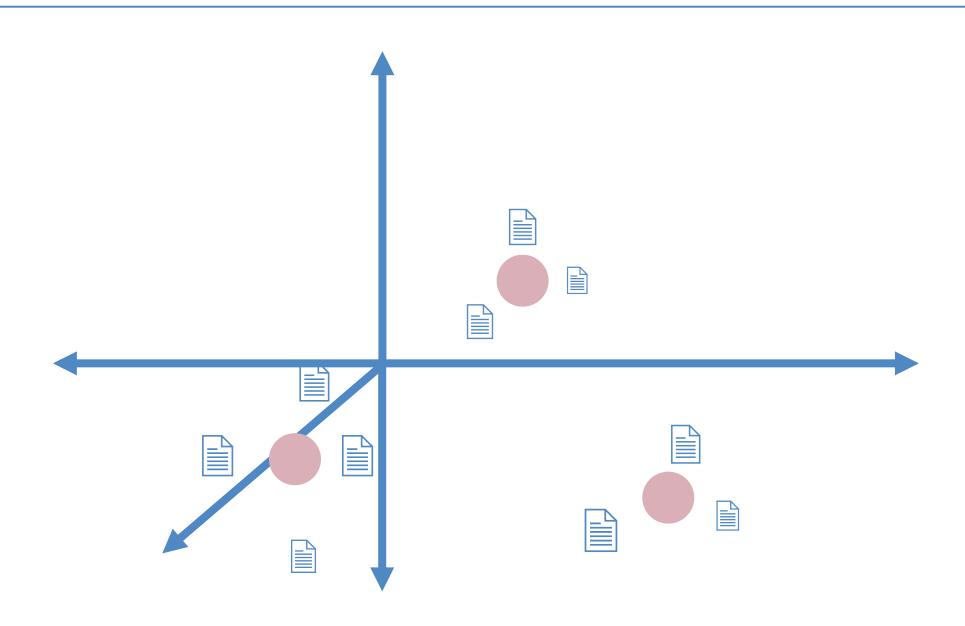
Analyse von 11.056 Berichten

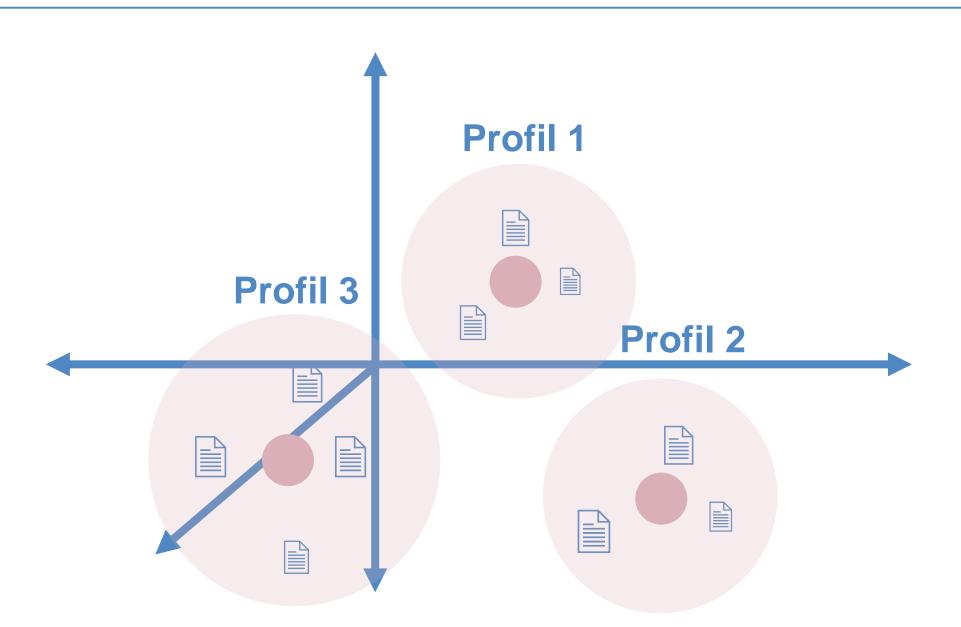
► Generative pre-trained transformer (GPT-4) für Emotionsanalyse

Methodik Emotionserkennung

- Mithilfe des Transfordermodells wurde 5 Emotionen
 - (Angst, Frustration, Ärger, Trauer, Schuld) bewertet
- Validiert durch Annotationen
 - Cohen's κ bis 0.85
- ▶ induktiv exploriert mithilfe von k-Means Clustering
- ► Latent Dirichlet Allocation (LDA) zur Themenmodellierung







Profil 1

"Bei der Intubation fehlte der Tubus, das

Notfallteam kam zu spät."

"Während der Reanimation war kein Defibrillator

im Raum, das Gerät musste geholt werden."

"Im OP kam es zu einem Kreislaufstillstand,

doch die Medikamente waren nicht verfügbar."

Studie Emotionserkennung

- ▶ 95.6 % negative Grundstimmung
- ▶ Dominant: Angst (0.63) & Frustration (0.59)
- ► Höhere Angst & Schuld in Notfallsettings (p < .05 / p < .001)
- ► Emotionale Berichte (v. a. mit Angst, Schuld, Trauer) bekamen seltener Feedback
- ▶ Keine starke Korrelation mit Schadensschwere
- ▶ 4 Emotionale Profile identifiziert

Studie Emotionserkennung Profile

Hoch negativ

Hohe Angst, Frustration, Trauer, Ärger

Typisch: Notfallsituationen, hoher Stress

Neutral

Niedrige Emotionswerte, eher technisch

Typisch: Routineereignisse, standardisierte Abläufe

Frustration

Hohe Frustration & Ärger, wenig Angst

Typisch: organisatorische / prozedurale Probleme

Gemischt

Mittlere Werte in Angst, Frustration, Trauer

Typisch: komplexe, aber nicht hochakute Fälle

Potentiale Emotionserkennung

- Zusätzliche Dimension neben sachlicher Klassifikation
- ► Frühwarnsignale: Angst/Schuld deuten auf komplexe oder riskante Situationen hin
- Triage-Unterstützung: prioritäre Meldungen schneller sichtbar machen
- Kultur-Sensibilität: Emotionen spiegeln Belastung des Personals,
 Ansatz für Just Culture & Peer Support (Second Victim)
- ► Hinweise auf Systemprobleme

Grenzen Emotionserkennung

- ► Emotion ≠ Schaden: keine direkte Korrelation mit objektiver Schwere
- Bias im Reporting: Emotionalität hängt auch von Schreibstil, Kultur und Selbstselektion ab
- Black-Box-Systeme mit möglicher Fehlklassifikation

KI kann Emotionen aus Fallberichten erkennen. Als zusätzlicher Indikator für Belastung, Priorisierung oder Second-Victim-Risiken.

Perspektive Künstliche Intelligenz

- ► Künstliche Intelligenz kann:
 - Feedback geben, Klassifizieren, Emotionen erkennen
- Aber nur auf Grundlage vorhanden Informationen
 - Weitere Probleme: unstrukturierte Daten, Imbalance

KI kann Risikomanager:innen unterstützen, indem sie deren Informationen ergänzt, bei Klassifizierung und Feedback hilft und zusätzliche Metriken zur Triage bereitstellt.

Vielen Dank für Ihre Aufmerksamkeit!

Dr. med. Carlos R. Hölzing

E-Mail: Hoelzing_C@ukw.de

Tel: 0931/201-30037