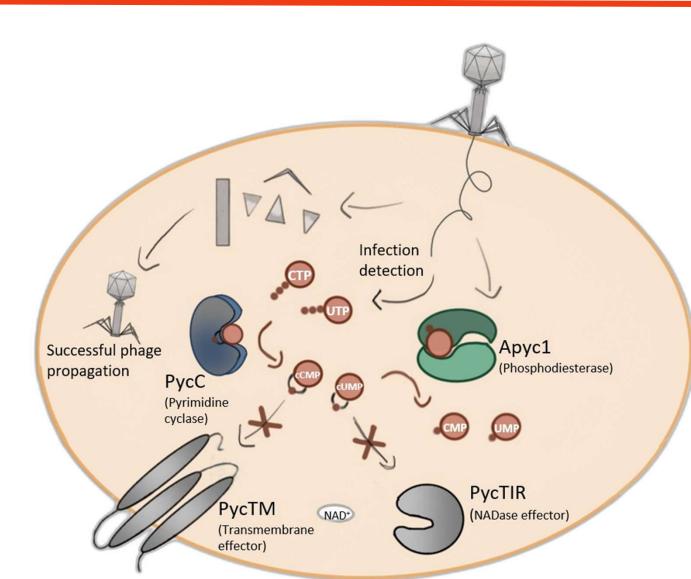
Viral phosphodiesterases circumvent bacterial phage defense — A characterization of the cyclic nucleotide-cleaving PDE Apyc1

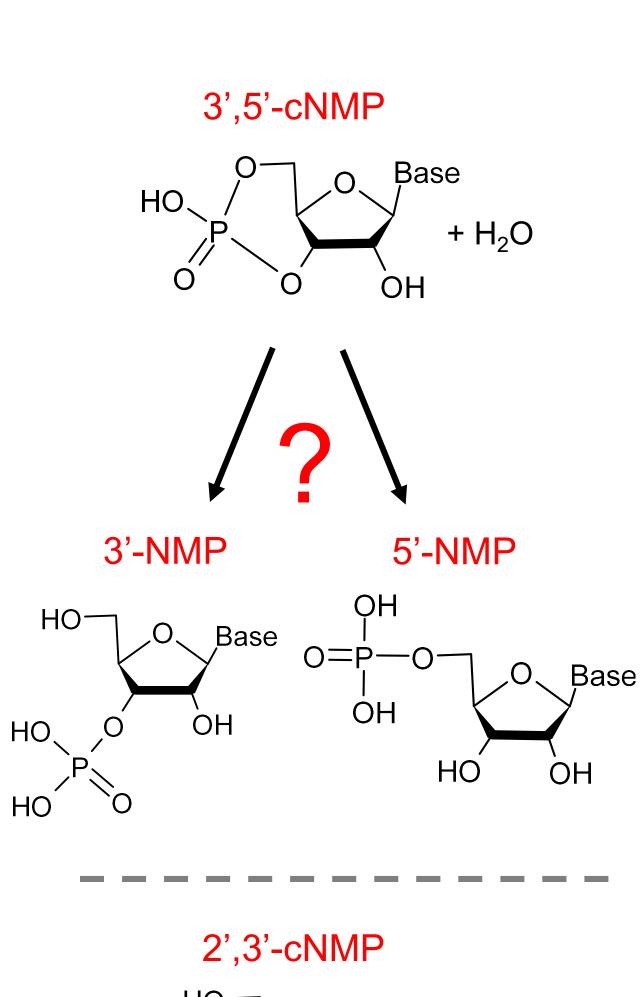

Lina Schütte¹, Lilly Bindel¹, Heike Bähre², Bastian Schirmer¹ and Roland Seifert^{1,2}

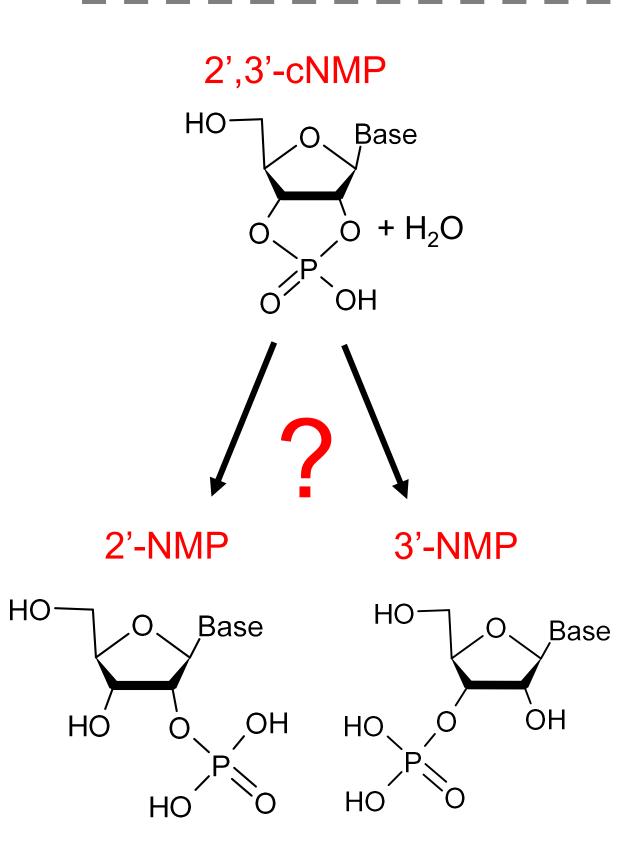
1 Institute of Pharmacology, Hannover Medical School, Hannover, Germany

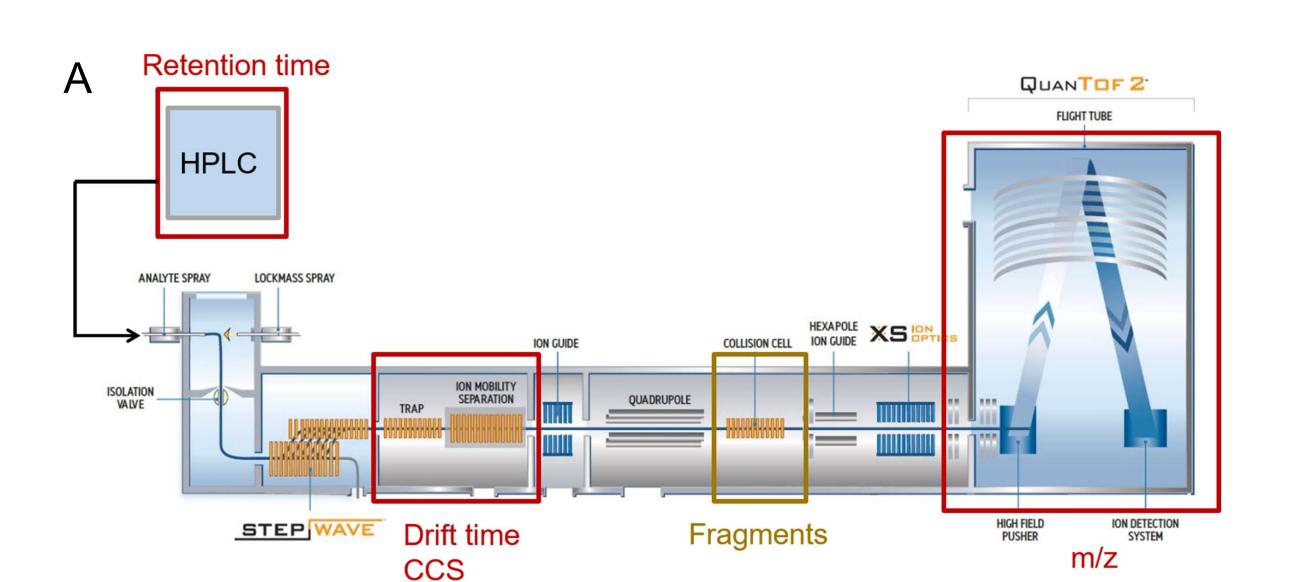
2 Research Core Unit Metabolomics, Institute of Pharmacology, Hannover Medical School, Hannover, Germany

Introduction

Multi-drug-resistant bacteria pose a growing threat to the health of the population. Therefore, new antibacterial drugs are urgently needed [1]. This work deals with the characterization of a novel viral phosphodiesterase (Apyc1) as a potential antibacterial drug candidate. In nature, Apyc1 enzymes play a key role in the infection of bacteria by phages. To defend themselves, bacteria have developed various antiphage defense systems. The system Pycsar relies on the activation of host immunity by formation of pyrimidine cyclic nucleotides (3',5'-cCMP and 3',5'-cUMP) [2]. Due to evolutionary pressure, phages have developed mechanisms to circumvent bacterial immunity. Phage phosphodiesterases (PDEs) with a relaxed cyclic nucleotide specificity play a central role in disrupting the host immunity of bacteria. These PDEs are able to prevent the activation of Pycsar by cleaving 3',5'-cUMP and 3',5'-cCMP and are therefore referred to as anti-Pycsar 1 enzymes (Apyc1) [3]. This work aims to test whether Apyc1, in contrast to other PDEs, can also hydrolyze 2',3'-cNMPs, whose role as signaling molecules in bacteria is still not fully understood.




Methods


Apyc1 gene from *Bacillus* phage SBSphiJ was cloned into a pET expression vector containing an N-terminal 6x His-tag. After production Anti-Pycsar scheme based on Tal et al. [2]. in *E. coli* BL21(DE3)pLysS, Apyc1 was purified via immobilized metal affinity chromatography and size exclusion chromatography. SDS-PAGE and western blot were used for identification and purity determination. The purified enzyme was then analyzed in enzyme assays containing 3',5'-cNMPs and 2',3'-cNMPs as substrates. Tris-HCl buffer (50 mM, pH 7.5) containing 150 mM NaCl, 1 mM DTT, 5 mM MgCl₂, 1 mM MnCl₂ and 100 μM of each 3',5'- or 2',3'-cNMP was used as a reaction buffer. The products of these reactions were unequivocally identified via LC-IMS-QTOF.

Methodology and Results

Identification of 3',5'-cNMP and 2',3'-cNMP hydrolysis products

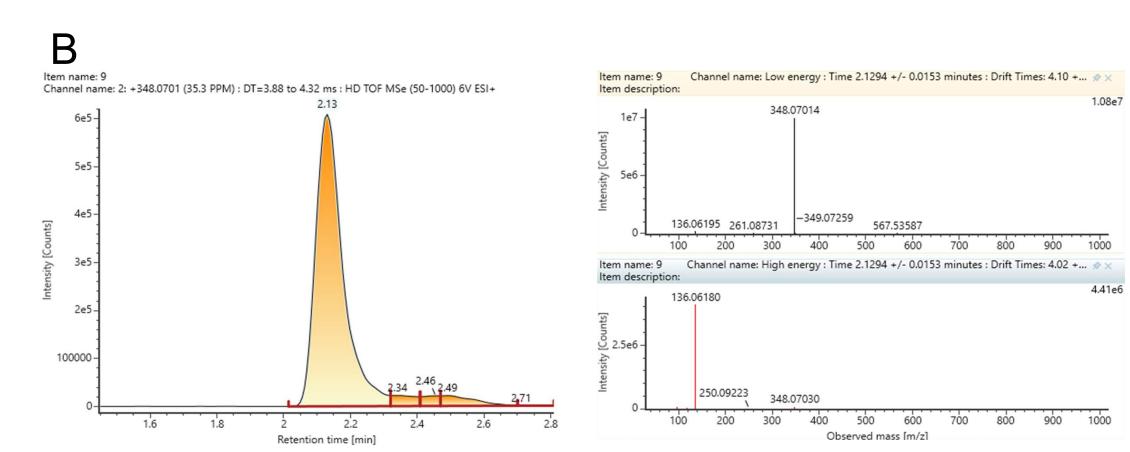


Figure 1: (A) Schematic diagram of the Vion LC-IMS-QTOF platform used in this work [4]. (B) Exemplary mass spectrum of product 1 of the 3',5'-cNMP hydrolysis identified as 5'-AMP.

Table 1: Comparison of LC-IMS-QTOF measurements of 3',5'-cAMP, -cCMP, -cGMP, -cUMP and 2',3'-cAMP, -cCMP, -cGMP, -cUMP hydrolysis products to NMP standard substances.

	3' 5'-cNMP hydrolysis				NMP standards							
3',5'-cNMP hydrolysis					AMP		СМР		GMP		UMP	
NMP	Product 1	Product 2	Product 3	Product 4	3'	5'	3'	5'	3'	5'	3'	5'
m/z	348.0702	324.0588	364.0650	325.0430	348.0700	348.0700	324.0590	324.0587	364.0647	364.0643	325.0420	325.0420
RT [min]	2.13	1.56	2.36	1.71	3.03	2.14	2.00	1.56	3.55	2.37	2.45	1.75
Drift time [ms]	4.10	3.97	4.50	3.90	4.24	4.07	4.02	3.93	4.61	4.45	3.96	3.88
CCS [Ų]	168.81	165.83	178.13	164.31	171.38	167.23	166.21	164.10	180.06	176.24	164.85	162.95
					NMP standards							
		2' 2' 0NIMD	hydrolycic					NMP sta	andards			
		2',3'-cNMP	hydrolysis		Al	MP	C	NMP sta	I	MP	U	MP
NMP	Product 1	2',3'-cNMP Product 2		Product 4	2'	MP 3'	2'		I	MP 3'	2'	MP 3'
NMP m/z				Product 4 325.0427		3'		MP	G	3'		
	348.0700	Product 2	Product 3		2'	3' 348.0670	2'	MP 3'	2'	3 ′ 364.0647	2'	3'
m/z	348.0700 3.06	Product 2 324.0589	Product 3 364.0646	325.0427	2 ′ 348.0700	3 ′ 348.0670 3.03	2 ' 324.0581	MP 3' 324.0590	2 ′ 364.0645	3 ′ 364.0647 3.55	2 ' 325.0400	3 ' 325.0420

- Regiospecific hydrolysis: 3',5'-cNMPs exclusively yielded 5'-NMPs; 2',3'-cNMPs exclusively yielded 3'-NMPs.
- Different nucleotides were distinguished by comparing experimental m/z values of the hydrolysis products with those of NMP standards.
- Nucleotide isomers were identified through comparison of retention time, drift time and CCS values against 2'-,3'-, and 5'-NMP standards.

Conclusion and Outlook:

- Apyc1-SBSPhiJ exhibits hydrolytic activity toward both 3',5'-cNMPs and 2',3'-cNMPs.
- The hydrolysis products of 3',5'-cNMPs and 2',3'-cNMPs were identified as the corresponding 5'-NMPs and 3'-NMPs, respectively.
- Future work will focus on optimizing the enzyme assay conditions, followed by a quantitative analysis of Apyc1 activity.

Determination of kinetic parameters, identification of modulators of Apyc1 activity

References

- [1] Seifert and Bugert (2023). *Trends Biochem Sci*, *48*(10), 835–838.
- [2] Tal *et al.* (2021). *Cell*, *184*(23), 5728-5739.e16.
- [3] Hobbs *et al.* (2022). *Nature*, *605*(7910), 522–526.
- [4] www.waters.com

Acknowledgements:

- We thank the Research Core Unit Metabolomics (MHH) for nucleotide quantification
- This project is funded by the German Research Foundation (DFG, Deutsche Forschungsgemeinschaft)

project numbers: 530200718 and GGF 886

Hannover Medical School

Poster PDF

