Current Projects


Current work includes:

The analysis and rational, computer-aided development of small molecule modulators to target genetic and infection diseases in a controlled manner. A particular focus lies here on the design, establishment of synthetic routes and mechanistic investigation of small molecule inhibitors of apicomplexan parasites, including the infection with the malaria parasite.

Deciphering molecular mechanisms and allosteric coupling in molecular motors. Mechanical work and directed movement is crucial for various biological processes. In the cell, directed motion is mostly conducted by molecular motor proteins. However, our knowledge about the molecular events of chemomechanical coupling and transduction remains incomplete. We aim to shed light on  allosteric communication pathways within the motor proteins and the mechanisms underlying force production and movement. 

Understanding disease development triggered by mutations at the atomic level. The consequences of such disease-related mutations can be diverse, however, many of them affect the structure and conformational dynamics, and thereby the function of the proteins. We are combining computational simulations and biophysical methods to unravel the effects of the mutations on the protein function, structure, and dynamics.