© Prof. P. Claus, Neuroanatomie und Zellbiologie, MHH

Curriculum Vitae



Diploma in Biology, University of Göttingen, Germany


Dr. rer. nat. University of Göttingen, Germany


Postdoctoral training at the Department of Developmental Biology, University of Göttingen


Postdoctoral Fellow at the Molecular Biology Institute, University of California (UCLA) Los Angeles, USA

since 1999

Senior Scientist at the Department of Neuroanatomy, Hannover Medical School, Hannover


Habilitation and Venia legendi for Anatomy, Hannover Medical School, Hannover


Associate Professor, Hannover Medical School, Hannover





Current research 



The molecular pathology of the neurodegenerative disease “Spinal Muscular Atrophy”

Spinal muscular atrophy (SMA) is a neurodegenerative disease in children accompanied by a massive loss of motoneurons causing death within the first two years of life. Mutations of the survival of motoneuron (SMN) gene are responsible for this defect. SMN is an assembly protein for RNA-protein complexes in the nucleus and in axons of neurons. However, it is still unclear whether motoneuron cell death is due to nuclear or axonal functions of the SMN protein 
Although SMN is expressed ubiquitously, exclusively motoneurons degenerate in SMA. Initially, SMN has been characterized as a splicing assembly protein. Recently, it has been found that SMN is a general assembly protein for RNA-protein complexes critically involved in survival and maintenance of motoneurons with long axons, e.g. by transporting certain mRNA molecules along these structures. Defects in axonal functions seem to play an important role in the pathophysiology of SMA. 
Our group has previously demonstrated that SMN is directly involved in the regulation of axonal growth. We have established a cell culture model for SMA which allows biochemical as well as morphometrical analyses of affected neurons. The lack of SMN results in significantly shorter neurites compared to normal conditions. This function is independent of SMN´s well-defined role as a splicing complex assembly protein. Mechanistically, we recently defined a new function of the SMN protein in microfilament metabolism in axons.


Future Projects and Goals

To elucidate the molecular pathology of SMA it is required not only to investigate the nuclear functions of SMN with respect to splicing, but also to extend research to axonal functions of SMN. In our group, we analyze the molecular differences between axonal and nuclear SMN complexes with regard to structure of the complex as well as to functional parameters in neurons by: (1) Differential analyses of protein-protein interactions, (2) Identification of the mechanisms responsible for differential axonal or nuclear localization, and (3) influence of SMN on the signalling cascades responsible for axon growth. The Claus group uses a wide spectrum of state-of-the-art molecular, biochemical and cell biology techniques, e.g. modern methodology of protein interaction research, RNAi and live cell imaging.

Neuronal dysregulation after Herpes simplex virus 1 (HSV1) infection
This project is embedded in the Niedersachsen Research Network on Neuroinfectiology (N-RENNT).

The main conceptual frame of this project is the hypothesis that biochemical (pathways) and structural (brain structures) entities important in neuronal de- and regeneration also display regulatory functions in neuronal Herpes simplex virus 1 (HSV1) - infection. This novel concept is tested in a number of cellular and in vivo systems (see below for current hypotheses) and comprises e.g. the role of neurotrophic and their regulation of neuronal stem cells after HSV1-infection.

Group structure:

Group Leader:

Prof. Dr. Peter Claus

Senior Researchers:      

Dr. rer. nat. Niko Hensel, Dr. rer. nat. Robert Lindner

Doctoral Fellows:

MSc Nora Tula Detering, MSc Sabrina Kubinski, MSc Tobias Schüning, cand. med. dent. Daniela Kuhn,

Tierärztin Antonia Joseph, MSc Ines Tapken

cand. med. dent. Antje Dunkel, cand. med. dent. Ines Bünermann, Bachelor- and Master-Students


Hella Brinkmann





Prof.Dr. rer.nat. Peter Claus

Institute of Neuroanatomy and Cell Biology, OE 4140

Building I3, Level H, Room 3340

Hannover Medical School

Carl-Neuberg-Str. 1

30625 Hannover, Germany

Phone: +49-511-532-2932

Fax: +49-511-532-2880

Mail: Claus.Peter@mh-hannover.de