Chromatin and SUMO physiology group


Research focus

Mobility is an indispensable feature that determines survival and success in the animal world. Skeletal muscle that allows this mobility accounts for 40% of human body mass. Apart from movement, another feature of the muscle power is to be able to bear the load. The skeletal muscle displaying a characteristic striated pattern is an array of linearly arranged units called ‘sarcomeres’. The individual sarcomere hosts highly organized structures including the actin, and myosin filaments. The cyclic interaction between these two types of filaments is responsible for generation of force and movement at the molecular to organismic level.

Precise molecular arrangement of sarcomere is central to the muscle function. Importantly, disorganization of sarcomere and thereby defective muscle function are the typical hallmarks of myopathies including cancer cachexia, prevalent in nearly 80% of patients.

Our group aims to understand how SUMO (Small Ubiquitin-like Modifier)-mediated epigenetic program regulates sarcomere organization and how it is deregulated in muscle atrophy/cachexia.


Lab Projects

  • ​Modulation of chromatin organization by SUMO pathway in myofibril assembly.
  • Epigenetic signaling in muscle atrophic condition/Cachexia.


Lab Members

Principal Investigator: Arnab Nayak

PhD student: Luis Gand

PhD student: Bushra Khan

technical assistant: Stefanie Nedel

With her excellent technical expertise in cell and molecular biology Stefanie is involved in various projects of the group.


Lab Methodologies

We employ various experimental approaches including quantitative proteomics, epigenomics (ChIPseq, chromosome conformation capture etc.) and single molecule biophysical methods such as total internal reflection fluorescence microscopy (TIRFM) to address our questions.​



Our lab is funded by research grant from the German Research Foundation (DFG).


Open position

To inquire for possible PhD position, please contact Dr. Arnab Nayak.


Selected publications

  • Mamta Amrute-Nayak, Gloria Pegoli, Tim Holler, Alfredo Jesus Lopez-Davila, Chiara Lanzuolo, Arnab Nayak,Chemotherapy triggers cachexia by deregulating synergetic function of histone-modifying enzymes, J Cachexia Sarcopenia Muscle, 2020 Dec 10., doi: 10.1002/jcsm.12645. Online ahead of print, PubMed
  • Wang T, Brenner B, Nayak A, and Amrute-Nayak M, Acto-Myosin Cross-Bridge Stiffness Depends on the Nucleotide State of Myosin II, Nano Letters, 2020 Sep 15. doi: 10.1021/acs.nanolett.0c02960. [Online ahead of print] PubMed
  • Nayak A*, Lopez-Davila AJ, Kefalakes E, Holler T, Kraft T, Amrute-Nayak M. (2019). Regulation of SETD7 Methyltransferase by SENP3 is Crucial for Sarcomere Organization and Cachexia. Cell Reports. Vol 27, issue 9, P2725-2736.e4, May 28. (*corresponding author)
  • Amrute-Nayak M, Nayak A, Steffen W, Tsiavaliaris G, Scholz T, Brenner B. (2019). Transformation of Conventional, Non-processive Myosin II into a Fast Processive Motor. (2019). Small. Feb;15(7)
  • Nayak, A*., Reck, A., Morsczeck, C., and Muller, S. (2017). Flightless-I governs cell fate by recruiting the SUMO isopeptidase SENP3 to distinct HOX genes. Epigenetics Chromatin .10, 15. (* corresponding author)
  • Jung, J., Nayak, A., Schaeffer, V., Starzetz, T., Kirsch, A.K., Muller, S., Dikic, I., Mittelbronn, M., and Behrends, C. (2017). Multiplex image-based autophagy RNAi screening identifies SMCR8 as ULK1 kinase activity and gene expression regulator. Elife 6
  • Nayak, A., Viale-Bouroncle, S., Morsczeck, C., and Muller, S. (2014). The SUMO-specific isopeptidase SENP3 regulates MLL1/MLL2 methyltransferase complexes and controls osteogenic differentiation. Mol Cell 55, 47-58
  • Nayak, A., Glockner-Pagel, J., Vaeth, M., Schumann, J.E., Buttmann, M., Bopp, T., Schmitt, E., Serfling, E., and Berberich-Siebelt, F. (2009). Sumoylation of the transcription factor NFATc1 leads to its subnuclear relocalization and interleukin-2 repression by histone deacetylase. J Biol Chem 284, 10935-10946.
  • Nayak, A., and Muller, S. (2014). SUMO-specific proteases/isopeptidases: SENPs and beyond. Genome Biol 15, 422.



  • Dr. Chiara Luanzolo
    Institute of Biomedical Technologies (ITB)-CNR
    Chromatin and Nuclear architecture Laboratory
    at Istituto Nazionale di Genetica Molecolare "Romeo ed Enrica Invernizzi”  Milan, Italy
  • Prof. Dr. med. Susanne Petri
    Department of Neurology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
  • Prof. Dr. Christian Morsczeck
    Department of Oral and Maxillofacial Surgery, University Hospital Regensburg, Germany
  • Prof. Dr. med. Michael Heuser
    Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School.